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Abstract

An application of the Exp-function method to search for exact solu-
tions of nonlinear differential equations is analyzed. Typical mistakes
of application of the Exp-function method are demonstrated. We show
it is often required to simplify the exact solutions obtained. Possibil-
ities of the Exp-function method and other approaches in mathemat-
ical physics are discussed. The application of the singular manifold
method for finding exact solutions of the Fitzhugh - Nagumo equation
is illustrated. The modified simple equation method is introduced.
This approach is used to look for exact solutions of the generalized
Korteweg - de Vries equation.
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1 Introduction

He and Wu introduced the so called Exp-function method in [1] to search for
exact solutions of nonlinear differential equations. At present this method is
very popular and we can find a lot of publications with applications of this
method in journals [2–15]. We can read a number of ecstatic words about
possibilities of this method. Let us present here some of them.
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”The expression of the Exp-function method is more general than the
sinh-function and tanh-function, so we can find more general solutions in
Exp-function method” [10].

”Exp-function method is easy, concise and an effective method to imple-
ment to nonlinear evolution equations arising in mathematical physics” [11].

”All applications verified that the Exp-function method is straightfor-
ward, concise and effective in obtaining generalized solitary solutions and
periodic solutions of nonlinear evolution equations. The main merits of this
method over the other methods are that it gives more general solutions with
some free parameters” [12].

”The solution procedure of this method can be easily extended to other
kinds of nonlinear evolution equations” [13].

”The Exp-function method leads to not only generalized solitonary solu-
tions but also periodic solutions” [14].

”Our first interest is implementing the Exp-function method to stress its
power in handling nonlinear equations, so that one can apply it to models of
various types of nonlinearity” [15].

We hope we have enough raptures about the Exp-function method.
The aim of this paper is to analyze some recent papers with application of

the Exp-function method and to discuss the main deficiencies of this method.
We would like also to point out the niche which this method can occupy

in comparison with other methods for finding exact solutions of nonlinear
differential equations.

The idea of the Exp-function method is very simple [2–15] but results are
very cumbersome. If we look at papers [5–7] we will note that we can not
check the most part of these exact solutions. As the consequence of appli-
cation of the Exp - function method we can usually obtain exact solutions
which have to be simplified. However sometimes it is not easy to make sim-
plifications taking into account cumbersome expressions. We are going to
demonstrate that the main deficiency of the application of the Exp-function
method is reducibility of the obtained exact solutions.

The paper is organized as follows. In section 2 we analyze the application
of the Exp-function method to the Korteweg - de Vries - Burgers equation
by Soliman [13]. We simplify exact solutions obtained by author and demon-
strate that all his solutions are not new and were found before. In section 2
we consider the application of the Exp-function method to the Riccati equa-
tion by Zhang [14] and point out that these solutions are also simplified and
these solutions are not new as well. In section 4 we analyze the work by Bekir
and Boz [15] with application of the Exp-function method to the Sharma -
Tisso - Olver equation and show that this exact solution can be simplified
too. Section 5 of this paper is devoted to discussion of the application of
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the Exp-function method and other methods for finding exact solutions of
nonlinear differential equations. In section 6 we introduce the modification
of the simplest equation method and in section 7 we demonstrate the appli-
cation of the modified simplest equation method to look for solution of the
generalized Korteweg - de Vries equation.

2 Application of the Exp-function method to

the Korteveg - de Vries - Burgers equation

by Soliman

Let us analyze the application of the Exp-function method to search for
exact solutions of the Burgers - Korteweg - de Vries - Burgers equation by
Soliman [13]

ut + ε u ux + µ uxxx − ν uxx = 0 (2.1)

Exact solutions of this equation in the form of the solitary wave at ε = 1
were first found in work [16] using the singular manifold method [17, 18]. It
takes the form

u = C0 +
6 ν2

25 µ
− 3 ν2

25 µ

(
1 + tanh

{
ν z

10 µ

})2

, z = x− C0 t− x0 (2.2)

where C0 and x0 are arbitrary constants.
Solution (2.2) can be transformed to the following form

u = C0 +
6 ν2

25 µ
− 12 ν2

25 µ
(
1 + e−

2 ν z
10 µ

)2 , z = x− C0 t− x0 (2.3)

Soliman in [13] obtained four ”new exact solutions” of Eq. (2.1) using
the Exp-function method. The first exact solution (solution (15) in [13]) was
written in the form

u =

4
25

(
25ε µ a−1−3 ν2 b20

ε µ b20

)
eη + 4 a−1

b0
+ a−1 e−η

eη + b0 +
b20
4

e−η
,

η = k (x + α t), α = − 2

25

(
50 ε µ a−1 − 3 ν2 b2

0

µ b2
0

)
(2.4)
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Solution (2.4) of work [13] satisfies Eq. (2.1) in the case k = ν z
10 µ

. However

exact solution (2.4) can be transformed taking into account the following set
of equalities

u =

4
25

(
25ε µ a−1−3 ν2 b20

ε µ b20

)
eη + 4 a−1

b0
+ a−1 e−η

eη + b0 +
b20
4

e−η
=

=
4 a−1

b2
0

− 12 ν2

25 ε µ
(
1 + b0

2
e−2 η

)2

(2.5)

Substituting η and α from (2.4) into (2.5) and taking into consideration
k = ν z

10 µ
, 4 a−1

b20
= C0 − 6 ν2

25 µ
, x0 = − ln b0

2
and ε = 1 we obtain solution (2.3).

One can see that the solution (2.4) is transformed to solution (2.2) in the
case ε = 1 and (2.4) is not new solution.

It was also obtained the second ”new exact solution” of the Korteweg -
de Vries - Burgers equation in work [13] in the form

u =
− 3

100

(
16ν2 b31+225 ε µ a−1

ε µ b31

)
e2 η − 1

100

−16 ν2 b31+675 ε µ a−1

ε µ b21
eη + a−1 e−η

e2η + b1 eη − 4 b31
27

e−η
,

η = k x + k λ t, λ =
3

100

(
8 ν2 b3

1 + 225 ε µ a−1

µ b3
1

)
(2.6)

Solution (2.6) satisfies Eq. (2.1) again at k = ν
10 µ

. Solution (2.6) can be
transformed as well by means of the following set of equalities

u =
− 3

100

(
16ν2 b31+225 ε µ a−1

ε µ b31

)
e2 η − 1

100

−16 ν2 b31+675 ε µ a−1

ε µ b21
eη + a−1 e−η

e2η + b1 eη − 4 b31
27

e−η
=

=
−675 a−1

100 b31

(
eη + 2

3
b1

)2 (
eη − b1

3

)− 48 ν2

100 ε µ
e2 η

(
eη − b1

3

)
(
eη + 2

3
b1

)2 (
eη − b1

3

) =

= −27 a−1

4 b3
1

− 12 ν2

25 ε µ
(
1 + 2

3
b1 e−2 η

)

(2.7)
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The last expression can be transformed to the exact solution (2.2) of Eq.
(2.1) if we assume k = ν z

10 µ
, −27 a−1

4 b31
= C0 − 6 ν2

25 µ
, x0 = − ln 2 b1

3
at ε = 1.

We do not new exact solitary solution of the Korteweg - de Vries - Burgers
equation again.

Two other exact solutions of work [13] (expressions (31) and (32)) do not
satisfy the Korteweg - de Vries - Burgers equation except trivial case k = 0
and we do not study them.

We have the following results of our analysis. Using the Exp-function
method Soliman in [13] obtained exact solutions in the cumbersome form
and has not simplified these solutions. Unfortunately he has not found any
new exact solutions of the Korteweg - de Vries - Burgers equation. His
statement that ”all the exact solutions of the KdV - Burgers equation are
new” is not correct.

3 Application of the Exp-function method to

the Riccati equation by Zhang

Using the Exp-function method Zhang presented ”new generalized solitonary
solutions of Riccati equation” in [14]. Let us illustrate that all solutions of
Riccati equation are well known and can be included in the general solution
of this equation.

Author in [14] has considered the Riccati equation in the form

Φξ = q + pΦ2 (3.1)

The general solution of Eq. (3.1) can be written as [19,20]

Φ(ξ) = i

√
q

p

1 + exp(2i
√

p q (ξ − ξ0))

1− exp(2i
√

p q (ξ − ξ0))
(3.2)

It is well known that the Riccati equation can be transformed to the linear
equation of the second order. Using transformation

Φ(ξ) = −1

p

Ψξ

Ψ
, Ψ ≡ Ψ(ξ), Ψξ =

dΨ

dξ
(3.3)

we have the linear equation from Eq. (3.1)

Ψξξ + p q Ψ = 0 (3.4)

General solution of Eq. (3.4) takes form

Ψ(ξ) = C1 exp(−i
√

p q ξ) + C2 exp(i
√

p q ξ) (3.5)
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Using (3.3) and (3.5) we get the general solution of Eq. (3.4) in the form

Φ(ξ) = i

√
q

p

C1 exp(−i
√

p q ξ)− C2 exp(i
√

p q ξ)

C1 exp(−i
√

p q ξ) + C2 exp(i
√

p q ξ)
(3.6)

Solution (3.6) can be transformed to solution (3.2) of Eq. (3.1) using the
following equalities

Φ(ξ) = i

√
q

p

C1 exp(−i
√

p q ξ)− C2 exp(i
√

p q ξ)

C1 exp(−i
√

p q ξ) + C2 exp(i
√

p q ξ)
=

= i

√
q

p

1− C2

C1
exp(2i

√
p q ξ)

1 + C2

C1
exp(2i

√
p q ξ)

= i

√
q

p

1 + exp(2i
√

p q (ξ − ξ0))

1− exp(2i
√

p q (ξ − ξ0))

(3.7)

where

ξ0 =
i

2
√

pq
ln

(
−C1

C2

)
(3.8)

It is clear that we can use general solution of Eq. (3.1) taking different
forms into consideration but all these forms of solutions are the same so-
lutions. We can write solution (3.2) and (3.6) using hyperbolic functions,
trigonometric functions and so on. But we have to take into account that
solution (3.2) is the general solution and other ”new solutions” of equation
(3.1) can not be found by any method.

Using the Exp-function method Zhang has found solution of Eq. (3.1)
in [14] for the following three cases:

1) p = −1

q
; 2) p =

1

q
; 3) p = − 1

4q
.

However all his solutions corresponds to expression (3.6). Let us demon-
strate an example of reducible solution (Solution (27) in [14]) in the case
p = − 1

4q
. Zhang has presented solution in the form

Φ(ξ) =
2b1q exp(ξ + ω) + a0 +

a2
0−4b20q2

8b1q
exp(−ξ − ω)

b1 exp(ξ + ω) + b0 − a2
0−4b20q2

16b1q2 exp(−ξ − ω)
(3.9)

However this solution can be transformed to (3.2). It follows from equal-
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ities

Φ(ξ) = 2q
16b2

1q
2 exp(ξ + ω) + 8a0b1q + (a2

0 − 4b2
0q

2) exp(−ξ − ω)

16b2
1q

2 exp(ξ + ω) + 16b0b1q2 − (a2
0 − 4b2

0q
2) exp(−ξ − ω)

=

= 2q
(a0 + 4b1q exp(ξ + ω))2 − 4b2

0q
2

4q2(b0 + 2b1 exp(ξ + ω))2 − a2
0

=

= 2q
(a0 + 4b1q exp(ξ + ω)− 2b0q)(a0 + 4b1q exp(ξ + ω) + 2b0q)

(2qb0 + 4b1q exp(ξ + ω)− a0)(2qb0 + 4b1q exp(ξ + ω) + a0)
=

= 2q
4b1q exp(ξ + ω) + a0 − 2b0q

4b1q exp(ξ + ω)− a0 + 2b0q
= 2q

C1 exp ξ − C2

C1 exp ξ + C2

(3.10)

where

C1 = 4b1q exp ω; C2 = −a0 + 2b0q; (3.11)

From the last expression we can see that solution (3.9) is not ”new generalized
solitonary solution” of the Riccati equation.

Solution (29) in [14] can be transformed as well. Zhang have presented
exact solution of the Riccati equation (3.1) in the form

Φ(ξ) = 2q
exp ξ + 2

√
2q + q exp(−ξ)

exp ξ + 2
√

q − q exp(−ξ)
(3.12)

However this solution can be simplified to solution (3.6) of Eq. (3.1) at
p = − 1

4q
again by means of equalities

Φ(ξ) = 2q
exp(2ξ) + 2

√
2q exp ξ + 2q − q

exp(2ξ) + 2
√

2q exp ξ + q − 2q
=

= 2q
(exp ξ +

√
2q)2 − q

(exp ξ +
√

q)2 − 2q
=

= 2q
(exp ξ +

√
2q −√q)(exp ξ +

√
2q +

√
q)

(exp ξ +
√

q −√2q)(exp ξ +
√

q +
√

2q)
=

= 2q
exp ξ +

√
2q −√q

exp ξ −√2q +
√

q
= 2q

exp ξ − C2

exp ξ + C2

(3.13)
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where

C2 =
√

q +
√

2q; (3.14)

So the Exp-function method does not allow Zhang in [14] to find out any
new solution of the Riccati equation. We observe the same case as for the
Burgers - Korteweg - de Vries equation by Soliman [13].

4 Application of the Exp-function method to

the Klein - Gordon and to the Sharma -

Tasso - Olver equations by Bekir and Boz

Bekir and Boz in [15] applied the Exp - function method to search for exact
solutions of the Klein - Gordon, the Burgers - Fisher and the Sharma - Tasso
- Olver equation.

For the Klein - Gordon equation

E1[u] = utt − uxx − u + u3 = 0, (4.1)

authors obtained the exact solutions of Eq. (4.1) in the form (formula (3.15)
in [15])

u(x, t) =
exp (k x + ω t)− 1

4
b2
0 exp (−(kx + ω t))

exp (k x + ω t) + b0 + 1
4
b2
0 exp (−(kx + ω t))

(4.2)

Solution (4.2) can be transformed into simple form if we use the following
equalities

u(x, t) =
exp (k x + ω t)− 1

4
b2
0 exp (−(kx + ω t))

exp (k x + ω t) + b0 + 1
4
b2
0 exp (−(kx + ω t))

=

=

(
exp (1

2
(kx + ω t))

)2 − (
b0
2

exp (−1
2
(kx + ω t))

)2

(
exp (1

2
(kx + ω t) + b0

2
exp (−1

2
(kx + ω t)

)2 =

=
exp (1

2
(k x + ω t)− b0

2
exp (−1

2
(kx + ω t)

exp (1
2
(kx + ω t) + b0

2
exp (−1

2
(kx + ω t)

(4.3)

The last solution can be easy found using the tanh-function method [21–23],
the simple equation method [24–26] or the singular manifold method [17,18,
27–34].
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Bekir and Boz studied exact solutions of the Sharma - Tassa - Olver
equation in [15]

ut + α
(
u3

)
x

+
3

2
α

(
u2

)
xx

+ α uxxx = 0 (4.4)

Authors have looked for exact solutions of Eq. (4.4) using the traveling wave

u(x, t) = u(ξ), ξ = x− w t (4.5)

Some solutions in [15] do not satisfy Eq. (4.4). However exact solution
(5.18) in [15] in the form

u(x, t) =
a0 − k b−1 exp (−(k x + ω t))

exp (k x + ω t)− k2 b−1+a2
0

k a0
+ b−1 exp (−(k x + ω t))

(4.6)

is correct but this exact solution can be transformed taking the following
equalities into account

u(x, t) =
a0 − k b−1 exp (−(k x + ω t))

exp (k x + ω t)− k2 b−1+a2
0

k a0
+ b−1 exp (−(k x + ω t))

=

=
a0 − k b−1 exp (−(k x + ω t))(

1
a0

exp (k x + ω t)− 1
k

)
(a0 − k b−1 exp (−(k x + ω t)))

=

=
a0 k

k exp (k x + ω t)− a0

(4.7)

Solution

u(x, t) =
a0 k

k exp (k x + ω t)− a0
(4.8)

satisfy Eq. (4.4) but this solution can be easy found using other methods.
More then that using the truncated expansion [16,24,29–34]

u(x, t) =
Fx

F
, F ≡ F (x, t) (4.9)

we can transform the Sharma - Tasso - Olver equation (4.4) to the linear
equation of the third order.
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We obtain

E3[u] = ut + α
(
u3

)
x

+
3

2
α

(
u2

)
xx

+ α uxxx =

=
∂

∂x

(
Ft + α Fxxx

F

)
= 0

(4.10)

Using formula (4.9) and linear partial differential equation of the third order

Ft + α Fxxx = 0 (4.11)

we can have many exact solutions of the Sharma - Tasso - Olver equation
(4.4).

5 Comparison of the Exp-function method

with other methods

We know that all nonlinear partial differential equations can be separated on
three types.

To the first type we can attribute all integrable partial differential equa-
tions. Partial differential equations of this type have the infinity amount of
the exact solutions. The most known equations of this type are the Korteweg
- de Vries equation, the Sine - Gordon equation, the nonlinear Schrodinger
equation, the modified Korteweg - de Vries equation, the Boussinesq equation
and the Kadomtsev - Petviashvili equation. This list can be continued but we
believe that mentioned equations are basic integrable equations. The Cauchy
problems for these equations can be solved using the inverse scattering trans-
form [35–37]. Solitary wave solutions can be found for these equations taking
the Hirota method into consideration [38].

The Exp-function method can be applied to these equations as well but
we do not think that the Exp-function method is better than the Hirota
method.

We can attribute the Burgers equation and other linearized differential
equations to the first type as well. One can use the Cole - Hopf transforma-
tions [39,40] and other transformations for these equations to obtain a lot of
exact solutions .

Nonlinear partial differential equations without exact solutions belong to
the second type of equations. There are a lot of examples of such equa-
tions but we give here only simple generalization of the Korteweg - de Vries
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equation in the form

ut + 6 uux + uxxx + α u = 0 (5.1)

We have not got any method to look for exact solutions of such equations.
We can conclude all nonintegrable partial differential equations with some

exact solutions to the third type of nonlinear differential equations. The
Kuramoto - Sivashinsky equation, the Ginzburg - Landau equation, the Ko-
rteveg - De Vries - Burgers equation, the Fisher equation, the Fitzhugh -
Nagumo equation and the Burgers - Huxley equation are the most known
equations of this type. We have many different methods to search for exact
solutions of such equations.

In last few decades great progress was made in the development of meth-
ods for finding exact solutions of nonlinear differential equations of the third
type.

We can mention the singular manifold method [17,18,27–34], tanh-function
method [21–23] and the simple equation method [24–26,41–50]. Certainly the
mentioned methods can be applied to nonlinnear integrable differential equa-
tions as well but what for? We think the Exp-function method cedes to the
enumerated methods because there are deficiencies which we demonstrated
in sections 2 - 4.

From our point of view there is no single best method to search exact
solutions of the nonlinear differential equations of the third type. Certainly
each investigator of differential equations has his experience and his sympathy
to methods but the choice of the method depends on form of the nonlinear
differential equation and the pole of his solution.

One can think that there is the class of the nonlinear differential equations
of the third type for effective application of the Exp-function method. This
class has exact solutions with pole of the first order. The Fitzhugh - Nagumo
equation, the Burgers - Huxley equation and some other equations [29, 30]
can be included to this class of equations.

However we prefer to use the singular manifold method for such equations
as well. Let us demonstrate this approach to look for exact solutions of the
Fitzhugh - Nagumo equation [19,29–31].

Let us take this equation in the form

ut − uxx + u(1− u)(α− u) = 0 (5.2)

Substituting

u =
√

2
Fx

F
, F = F (x, t) (5.3)
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into Eq. (5.2) and equating expressions at F−1 and F−2 to zero we have the
following equations

Fxt + α Fx − Fxxx = 0 (5.4)

Ft − 3 Fxx +
√

2 (α + 1) Fx = 0 (5.5)

Solutions of this overdetermined system of equations can be easy found.
Substituting Ft from (5.5) into Eq. (5.4) we have

2 Fxxx −
√

2 (α + 1) Fxx + α Fx = 0 (5.6)

Solution of this equation can be presented in the form

F (x, t) = C0(t) + C1(t) eλ1 x + C2(t) eλ2 x, α 6= 1 (5.7)

where λ1,2 are nonzero roots of equation

2 λ3 −
√

2 (α + 1) λ2 + α λ = 0 (5.8)

Solving Eq. (5.8) we have

λ0 = 0, λ1 =

√
2

2
, λ2 =

α
√

2

2
, α 6= 1 (5.9)

and F (x, t) in the form

F (x, t) = C0(t) + C1(t) ex
√

2/2 + C2(t) eα x
√

2/2 (5.10)

Functions C0(t), C1(t) and C2(t) can be obtained after substitution (5.10)
into Eq. (5.5). We have

F (x, t) = c0 + c1 e(x
√

2/2−α t+t/2) + c2 e (α x
√

2/2−α t+α2 t/2 ), α 6= 1 (5.11)

where c0, c1 and c2 are arbitrary constants.
Substituting solutions for F (x, t) into formula (5.3) for u we have exact

solutions of the Fitzhugh - Nagumo equation in the form

u =
c1 e(x

√
2/2−α t+t/2) + c2 α eα /2 (x

√
2+α t−2 t )

c0 + c1 e(x
√

2/2−α t+t/2) + c2 eα /2 (x
√

2+α t−2 t )
, α 6= 1 (5.12)

At α = 1 we can obtain F (x, t) from the set of Eqs. (5.4) - (5.3) as well.
It takes the form

F (x, t) = c0 + (c1 + c2 x +
√

2 c2 t) e (x
√

2/2− t/2 ), (5.13)
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Exact solution can be found from formula (5.3)

u =

√
2 (c1

√
2 + 2 c2 + c2

√
2 x + 2 c2 t) e (x

√
2/2− t/2 )

2
(
c0 + (c1 + c2 x +

√
2 c2 t) e (x

√
2/2− t/2 )

) , (5.14)

The last solution can not be found by application of the Exp-function
method. Exact solution (5.12) was not found by means of the Exp-function
method as well but it could be found. However we think the application of the
singular manifold approach for constructing exact solution to the Fitzhugh -
Nagumo equation is easier than the application of the Exp-function method.

6 Modified simple equation method

The simple equation method is applied to find out an exact solution of a
nonlinear ordinary differential equation

P (y, y′, y′′, y′′′, . . . ) = 0, (6.1)

where y = y(z) is an unknown function, P is a polynomial of the variable y
and its derivatives.

To solve Eq. (6.1) we expand its solutions y(z) in a finite series

y(z) =
N∑

k=0

AkY
k, Ak = const, AN 6= 0, (6.2)

where Y = Y (z) are some special functions. These are, for example, the
functions tanh(kz) for the tanh–method.

The basic idea of the simple equation method is the assumption that
Y = Y (z) are not only some special functions, but they are the functions
that satisfy some ordinary differential equations. These ordinary differen-
tial equations are referred to as the simplest equations. Two main features
characterize the simplest equation: first, this is the equation of a lesser order
than Eq. (6.1); second, the general solution of this equation is known (or
we know the way of finding its general solution). This means that the exact
solutions y(z) of Eq. (6.1) can be presented by a finite series (6.2) in the
general solution Y = Y (z) of the simplest equation.

One of the simple equation is the Riccati equation

Y ′ + Y 2 + aY + b = 0, a, b = const. (6.3)

The general solution of Eq. (6.3) is usually searched with the help of the
standard anzats [19,20]

Y =
ψ′

ψ
, (6.4)
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where ψ = ψ(z) is an unknown function to be found. This anzats leads to
the second order linear ordinary differential equation

ψ′′ + aψ′ + bψ = 0 (6.5)

that general solution ψ = ψ(z) is well–known. Turning back to the variable
Y (6.4) by applying the general solution ψ = ψ(z) and substituting the
ratio (6.4) in the expansion (6.2) we immediately obtain the exact solution
y = y(z) of Eq. (6.1).

Meanwhile, if one feels oneself ill at ease with differential equations then
one can exclaim: How can I find this magic simplest equation? To get over
this threatening obstacle we suggest to avoid this difficulty by writing the
expansion (6.2) straight in the form

y(z) =
N∑

k=0

AkY
k =

N∑

k=0

Ak

(
ψ′

ψ

)k

. (6.6)

Therefore, the exact solutions y = y(z) of the nonlinear ordinary differ-
ential equation (6.1) we could look for in the form

y(z) =
N∑

k=0

Ak

(
ψ′

ψ

)k

, Ak = const, AN 6= 0, (6.7)

where the function ψ = ψ(z) obeys Eq. (6.5).
Another simple equations are discussed in [28].
In the present paper we extend the simple equation method by the as-

sumption that the function ψ = ψ(z) is the general solution for the linear
ordinary differential equation of the third order

ψ′′′ = αψ′′ + βψ′ + γψ, α, β, γ = const. (6.8)

Now we are going to find the exact solutions of some equations like
Eq. (6.1) by using the extended simple equation method. This implies that
we will search the solution y = y(z) of Eq. (6.1) in a form of the expansion
(6.7), where the function ψ = ψ(z) obeys Eq. (6.8) and the coefficients Ak

and the parameters α, β, γ are to be found.
Below we look round the main steps of our algorithm.
Firstly, for Eq. (6.1) we determine the positive number N in the expansion

(6.7). To realise this procedure we concentrate our attention on the leading
terms of Eq. (6.1). These are the terms that lead to the least positive p
when a monomial y = a

zp is substituted in all the items of this equation. The
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homogeneous balance between the leading terms provides us the value of N .
This value is also referred to the order of a pole for the solution of Eq. (6.1).

Secondly, we substitute in Eq. (6.1) the expansion (6.7) with the value of
N already determined, we calculate all the necessary derivatives y′, y′′, y′′′,
. . . of an unknown function y = y(z) and we account that the function ψ =
ψ(z) satisfies Eq. (6.8). As a result of this substitution we get a polynomial

with respect to the ratio ψ′
ψ

and its derivative
(

ψ′
ψ

)′
.

Thirdly, in the polynomial just obtained we gather the items with the

same powers of the ratio ψ′
ψ

and its derivative
(

ψ′
ψ

)′
and we equate with

zero all the coefficients of this polynomial. This operation yields a system of
algebraic equations with respect to the coefficients Ak of the expansion (6.7)
and to the parameters α, β, γ of Eq. (6.8).

Fourthly, we solve the algebraic system.
Fifthly, in Eq. (6.8) we take the parameters α, β, γ that are the solutions

of the algebraic system and derive the general solution ψ = ψ(z) of Eq. (6.8)
for them.

And finally, we substitute the general solution ψ(z), its derivative ψ′(z)
and coefficients Ak in the expansion (6.7). The expansion (6.7) written in
such form gives the exact solution of Eq. (6.1).

7 Application of the modified simplest equa-

tion method to generalization of the Ko-

rteweg - de Vries equation

Let us apply the modified simplest equation method to look for exact solu-
tions of the generalized Korteweg–de Vries equation with source in the form

ut + uxxx − uxx − uux + 3 (ux)
2 + 3uuxx + 3u2ux + hu− 2u2 + u3 = 0, (7.1)

where u = u(x, t) is an unknown function, ut, ux, . . . are the partial deriva-
tives of u(x, t) and h is an arbitrary constant.

Using the travelling wave let us find exact solutions of equation

y′′′ + 3yy′′ − y′′ − yy′ + 3 (y′)2 − C0y
′ + 3y2y′ + y3 − 2y2 + hy = 0. (7.2)

We look for solutions of Eq. (7.2) in the form

y(z) = A0 + A1
ψz

ψ
(7.3)
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where ψ(z) satisfies Eq. (6.8). Substituting (7.3) into Eq. (7.2) and taking
Eq. (6.8) into account we obtain

A1 = 1,

A0 =
2

3
− α

3
,

β =
4

3
− α2

3
− h,

C0 = 2− h,

δ =
α3

27
+

16

27
− 4 α

9
+

hα

3
− 2 h

3

(7.4)

We have solution

y(z) =
2

3
− α

3
+

ψz

ψ
(7.5)

Where ψ(z) satisfy linear equation in the form

ψzzz − αψzz +

(
h +

α2

3
− 4

3

)
ψz +

(
2h

3
+

4α

9
− hα

3
− α3

27
− 16

27

)
ψ = 0

(7.6)

Solution ψ(z) at h < 1 can be written in the form

ψ(z) = C1e
(α

3
− 2

3 )z + C2e
(α

3
+ 1

3
+
√

1−h)z + C3e
(α

3
+ 1

3
−√1−h)z (7.7)

We have solution y(z) of Eq. (7.2) at C0 = 2− h

y(z) =
C2

(
1 +

√
1− h

)
ez(1+

√
1−h) + C3

(
1−√1− h

)
e−z(−1+

√
1−h)

C1 + C2e
z(1+

√
1−h) + C3e

−z(−1+
√

1−h)
(7.8)

Assuming h = 1 from Eq. (7.6) we have solution ψ(z) in the form

ψ(z) = C1exp

(
α z

3
− 2 z

3

)
+ (C2 + C3 z) exp

(α z

3
+

z

3

)
(7.9)

and solution of Eq. (7.2)

y(z) =
C2 + C3(1 + z)

C1 exp (−z) + C2 + C3z
(7.10)
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Assuming h = 1 + k2 in the case h > 1 we have solution ψ(z)

ψ(z) = C1e
(α z

3
− 2 z

3 ) + C2e
(α z

3
+ z

3 ) sin (k z) + C3e
(α z

3
+ z

3) cos (kz) (7.11)

Exact solutions of Eq. (7.2) in this case takes the form

y(z) =
(C2 k + C3) cos (k z) + (C2 − C3 k) sin (k z)

C1 exp (−z) + C2 sin (k z) + C3 cos (k z)
(7.12)

These solutions were not found by means of the Exp-function method.

8 Conclusion

We have given the analysis of the application of the Exp-function method for
finding exact solutions of nonlinear differential equations. On the examples
of papers [13–15] we have shown that this method allows us to search for
exact solutions. However these exact solutions are cumbersome and as a rule
we need to simplify them. Without simplifications one can think that we
obtain ”new solutions” of nonlinear differential equations.

We have discussed different methods for finding exact solutions. From
our point of view we do not have the single best method to search for exact
solutions of nonlinear nonintegrable differential equations. Sometimes we
have to apply the singular manifold method [17, 18, 27–34], tanh-function
method [21–23], the simple equation method [24–26], trial function method
[51,52] and so on.

In this paper we have presented the modified simple equation method
and we think this method can be used to look for exact solutions in a num-
ber cases. We have illustrated our method to obtain exact solutions of the
generalized Korteveg - de Vries equation with source.

9 Acknowledgements

This work was supported by the International Science and Technology Center
under Project B 1213.

References

[1] J.H. He, X.H. Wu, Exp-function method for nonlinear wave equations,
Chaos, Solitons and Fractals, 30 (2006) 700 - 708

17



[2] J.H. He, M.A. Abdou, New periodic solutions for nonlinear evolution
equations using Exp-function method, Chaos, Solitons and Fractals, 34
(2007) 1421 - 1429

[3] X.H. Wu, J.H. He, Solitary solutions, peridic solutions and compaction
- like solutions using the Exp-function method, Comput. Math. Appl.
54 (2007) 966 - 986

[4] S.D. Zhu, Exp-function method for the Hybrid - Lattice system, Int. J.
Nonlinear Sci. Numer. Simul. 8 (2007) 461 - 464

[5] M.A. Abdou, A.A. Soliman and S.T. El-Basyony, New Application of
the Exp-function for improved Boussinesq equation, Phys. Lett.A 369,
(2007), 469 - 475

[6] S.A. El - wakil, M.A. Madkour, M.A. Abdou, Application of the Exp-
function method for nonlinear evolution equations vith variable coeffi-
cients, Phys. Letters A 369, (2007), 62 - 69

[7] S.A. El - wakil, M.A. Abdou, A. Hendi, New periodic wave solutions via
Exp-function method, Phys. Letters A, 372, (2008), 830 - 840

[8] S. Zhang, Exp-function method for solving Maccari’s system, Physics
Letters A, 371 (2007) 65 - 71

[9] A. Ebaid, Exact solitary wave solutions for some nonlinear evolution
equations via Exp-function method, Physics Letters A, 365 (2007) 213
- 219

[10] E. Yusufoglu, New solitary solutions for the MBBM equations using
Exp-function method, Physics Letters A 372 (2008) 442 - 446

[11] T. Ozis, C. Koroglu, A novel approch for solving the Fisher using Exp-
function method, Physics Letters A 372 (2008) 3836 - 3840

[12] C. Chun, Soliton and periodic solutions for the fifth-order KDV equation
with the Exp - function method, Physics Letters A 372 (2008) 2760 -
2766

[13] A.A. Soliman, Chaos, Solitons and Fractals, Exact solutions of the KdV
- Burgers equation by Exp-function method, Chaos, Solitons and Frac-
tals (in press), doi: 10.1016/J.chaos. 2008.04.038

18



[14] S. Zhang, Application of the Exp-function method to Riccati equation
and new exact solutions with three arbitrary functions of Broer - Kaup
- Kupershmidt equations, Physics Letters A, 372 (2008) 1873-1880

[15] A. Bekir, A. Boz, Exact solutions for nonlinear evolution equation using
Exp-function method, Physics Letters A 372 (2008) 1619 - 1625

[16] N.A. Kudryashov, Exact soliton solutions of the generalized evolution
equation of wave dynamics, Journal of Applied Mathematics and Me-
chanics, v. 52 (3), (1988), 361

[17] J. Weiss, M. Tabor, G. Carnevalle The Painleve property for partial
differential equations, J. Math. Phys. 24, (1983), 522-526

[18] J. Weiss The Painleve property for partial differential equations. II:
Backlund transformation, Lax pairs, and the Schwarzian derivative, J.
Math. Phys., 24, (1983), 1405-1413

[19] N.A. Kudryashov, Analitical theory of nonlinear differential equations,
Moskow - Igevsk, Institute of computer investigations, (2004), 360 (in
Russian).

[20] A.D. Polyanin, V.F. Zaitsev, A.I. Zhyrov, Methods of nonlinear equa-
tions of mathematical physics and mechanics, Fizmatlit, Moscow,
(2005), 260

[21] S.Y. Lou, G.X. Huang, H.Y. Ruan, Exact solitary waves in a convecting
fluid, J. Phys. A. Math. Gen., 24 (11), (1991) L587 - L590

[22] E.J. Parkes, B.R. Duffy, An automated tanh-function method for find-
ing solitary wave solutions to non-linear evolution equations, Comput.
Phys. Commun. 98 (1996) 288 -300

[23] W. Malfliet, W. Hereman W., The Tanh method: I Exact solutions of
nonlinear evolution and wave equations, Phys. Scripta 54 (1996) 563-568

[24] N.A. Kudryashov, Exact solutions of the generalized Kuramoto -
Sivashinsky equation, Phys Lett A 147, (1990), 287–291

[25] N.A. Kudryashov, Simplest equation method to look for exact solutions
of nonlinear differential equations, Chaos, Solitons and Fractals, v.24,
(2005), 1217 - 1231

[26] N.A. Kudryashov, Exact solitary waves of the Fisher equations, Physics
Letters A., v. 342, (2005), 99 - 106

19



[27] N.A. Kudryashov, On types nonlinear nonintegrable differential equa-
tions with exact solutions, Phys Lett A, 155 (1991), 269-275.

[28] N.A. Kudryashov, E.D. Zargaryan. Solitary waves in active - dissipative
dispersive media, J Phys A: Math. Gen., 29, (1996), 8067 - 8077.

[29] N.A. Kudryashov, Partial differential equations with solutions having
movable forst - order singularities, Physics Letters A 169 (1992) 237 -
242

[30] N.A. Kudryashov, Multi - phase and rational solutions of one family
of nonlinear equations, Theoretical and Mathematical Physics, 94 (3)
(1993) 393 - 407

[31] O.Yu. Yefimova, N.A. Kudryashov, Exact solutions of the Burgers -
Huxley equation, Journal of Applied Mathematics and Mechanics, 68(3),
(2004), 413 - 420

[32] Conte R., Musette M. Painleve analysis and Backlund Transformations
in the Kuramoto - Sivashinsky equation, J. Phys. A.: Math. Gen. 22
(1989), 169 - 177

[33] Conte R., 1999 The Painleve property, one century later, CRM series in
mathematical physics, Springer – Verlag, New York, (1999) 77 - 180

[34] Y.Z. Peng, E.V. Krishnan, The singular manifold method and exact
periodic wave solutions to a restricted BLP dispersive long wave system,
Reports on mathematical physics 56 (2005) 367 - 378

[35] M.J. Ablowitz and P.A. Clarkson Solitons Nonlinear Evolution Equa-
tions and Inverse Scattering, Cambridge university press, (1991)

[36] M.J. Ablowitz, D.J. Kaup, A.C. Newell, H. Segur , Method for solving
the sine-Gordon equation. Phys. Rev. Lett. 30 (1973) 1262 - 1264

[37] M.J. Ablowitz, D. J. Kaup, A. C. Newell, H. Segur The Inverse Scat-
tering Transform - Fourier Analysis for Nonlinear Problems Stud. Appl.
Math. v. 53, (1974), 249 - 315.

[38] R. Hirota, Exact solution of the Korteweg de Vries equation for multiple
collisions of solitons, Phys. Rev. Lett. 27 (1971), 1192 - 1194

[39] E. Hopf The partial differential equation. u t + uu = lauxx, Commun.
Pure AppL Math. 13 (1950) 201 - 230.

20



[40] J.D. Cole On a quasilinear parabolic equation occurring in aerodynam-
ics, Quart. Appl. Math. 9 (1951) 225 - 236.

[41] Z.T. Fu, S.K. Liu, S.D. Liu, et al., New Jacobi elliptic function expan-
sion and new periodic solutions of nonlinear wave equations, Physics
Letters A 290 (1-2) (2001) 72 - 76

[42] S.K. Liu, Z.T. Fu, S.D. Liu, et al., Jacobi elliptic function expansion
method and periodic wave solutions of nonlinear wave equations, Physics
Letters A 289 (1-2) (2001) 69 - 74

[43] M. Qin, G.Fan, An effective method for finding special solutions of
nonlinear differential equations with variable coefficients, Physics Letters
A 372 (2008) 3240 - 3242

[44] Z.Y. Peng, Exact travelling wave solutions for the Zakharov - Kuznetsov
equation, Applied Mathematics and Computation 199 (2008) 397 - 405

[45] N.A. Kudryashov, M.B. Sukharev, Exact solutions of the fifth - order
equation for describing waves on the water, Journal of Applied Mathe-
matics and Mechanics, 65 (5) (2001), 855 - 865

[46] N.A. Kudryashov, Fuchs indices and the first integrals of nonlinear dif-
ferential equations, Chaos, Solitons and Fractals, 26 (2) (2005), 591 -
603

[47] N.A. Kudryashov, M.V. Demina, Polygons of differential equations for
finding exact solutions, Chaos, Solitons and Fractals, 33, (2007), 1480 -
1496

[48] N.A. Kudryashov, Solitary and Periodic Solutions of the Generalized
Kuramoto - Sivashinsky Equation, Regular and Chaotic Dynamics, 13
(3), (2008), 234 -238

[49] E.S. Fahmy, Traveling wave solutions for some time - delayed equations
through vactorizations, Chaos, Solitons and Fractals, 38 (2008) 1209 -
1216

[50] A. Elgarayhi, New periodic waves solutions for the shallow water of
the generalized Klein - Gordon equation, Communications in Nonlinear
Science and Numerical Simulations, 13 (2008) 877 - 888

[51] Y. Xie, J.S. Tang, A unified trial fuction method in finding the explisit
and exact solutions to three NPDs, Physica Scripta 74 (2) (2006) 197 -
200

21



[52] Y. Xie, J.S. Tang, A unified method for solving sinh - Gordon type
equations,Nuovo Cimento, Pisica B 121 (2) (2006) 115 - 120

22


