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Abstract

We demonstrate that eight from twenty seven solutions obtained by Li
and Dai [Abundant new exact solutions for the (3+1)-dimensional Jimbo-
Miwa equation, J. Math. Anal. Appl. 361 (2010). 587–590 ] are wrong
and do not satisfy the equation. The other nineteen exact solutions are
not new solutions and can be found from the well known solution.

Li and Dai [1] looked for exact solutions of the (3 + 1) Jimbo—Miwa equation

uxxxy + 3 ux uxy + 3 uyuxx + 2 uyt − 3 uxz = 0. (1)

Authors [1] used the traveling wave ansatz u(x, y, z, t) = U(ξ), ξ = k x + l y +
mz + ω t in Eq.(1). After integrating with respect to ξ they obtained the
nonlinear ordinary differential equation in the form

k3 l U
′′′

+ 3 k2 l (U ′)2 + (2 l ω − 3 k m)U
′
= C. (2)

Here C is an constant of integration. Authors [1] applied the generalized Riccati
equation method to look for exact solution of Eq.(2). However we know very
well the general solution of Eq.(2).

Let us demonstrate this fact. Denoting U ′ = V (ξ) in Eq.(2) we have the
following equation

k3 l V
′′

+ 3 k2 l V 2 + (2 l ω − 3 k m)V = C (3)

Multiplying Eq. (3) on V ′ and integrating the equation with respect to ξ we
obtain the equation

k3 l

2
(V ′)2 + k2 l V 3 +

2 l ω − 3 k m

2
V 2 = C V + C1, (4)

where C1 is an arbitrary constant.
Using transformation

V = −2 k

(
℘ +

2 l ω − 3 k m

12 k3 l

)
(5)

from Eq. (4) we obtain

(℘′)2 = 4 ℘3 − g2 ℘− g3, (6)
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where

g2 =
(2 l ω − 3 k m)2 + 12 k2 l C

12 k6 l2
,

g3 =
(2 l ω − 3 k m)3 − 108 k4 l2 C1 + 18 k2 l C(2 l ω − 3 k m)

220 k9 l3
.

(7)

We can see that the general solution of Eq.(6) and consequently Eq.(2) is
expressed via the Weierstrass elliptic function [2]. As for the rational, periodic
and solitary wave solutions of (2) they can be found from Eq. (6) or Eq.
(4) [3–8].

In the case of C1 = C = 0 solution of Eq. (4) takes the form

V (ξ) = −2 l ω − 3 k m

2 k2 l

(
1 + tan2

{
1
2

√
2 l ω − 3 k m

k3 l
(ξ + C2)

})
, (8)

where C2 in an arbitrary constant.
Integrating solution (8) once with respect to ξ, we obtain the solution of Eq.

(2)

U(ξ) = C3 − k

√
2 lω − 3 k m

k3 l
tan

{
1
2

√
2 l ω − 3 k m

k3 l
(ξ + C2)

}
. (9)

Here C3 in an constant of integration.
If C1 = C = 0 and ω = 3 k m

2 l we have rational solution of Eq. (4)

V (ξ) = − 2k

(ξ + C2)2
, (10)

where C2 in an arbitrary constant.
Integrating (10) once with respect to ξ, we obtain the rational solution of

Eq. (2)

U(ξ) = C3 +
2k

ξ + C2
. (11)

Here C3 in an integration constant.
The paper [1] contains the important misprint: the value of ω presented by

Li and Dai in formula (2.8) is wrong.
The right value of ω is the following

ω =
4 k3 l q r + 3 k m− p2 k3 l

2l
. (12)

We checked all solutions by Li and Dai [1] with value of ω (12) and obtained
that expressions u7, u10, u11, u12, u17 − u19, u22, u23 and u5 with lower sign do
not satisfy Eq. (2). Solutions u1 − u4, u6, u8, u9, u13 − u16, u20, u21, u24 − u26

and u5 with upper sign are the same and can be obtained from formula (9).
Substituting (12) in solution (9) we have

U(z) = C3 − k
√

4 q r − p2 tan
{

1
2

√
4 q r − p2(ξ + C2)

}
. (13)
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Taking into account formula

i tan iα = − tanh α (14)

at 4 q r − p2 < 0 from Eq. (13) we have

U(z) = C3 + k
√

p2 − 4 q r tanh
{

1
2

√
p2 − 4 q r(ξ + C2)

}
. (15)

We can see that (15) coincides with u1 at C3 = a0 + k p, C2 = 0.
Using the identity

tanh(ξ + iπ/2) = coth ξ (16)

in the case of C3 = a0 + k p, C2 = iπ from (15) we obtain solution u2 by Li and
Dai.

Taking into account the identity

tanh ξ ± isechξ = tanh(
ξ

2
± iπ

4
) (17)

one can see that u3 is equal to (15) at C3 = a0 + k p, C2 = ± iπ
2 .

In the case of C3 = a0 + k p, C2 = iπ and using formula

coth ξ + cschξ = tanh(
ξ

2
+

iπ

2
) (18)

we can see that (15) is equal to u4 with upper sign.
Using formula

coth ξ − cschξ = tanh
ξ

2
(19)

and suppose that C3 = a0 + k p, C2 = 0 in (15) we have solution u4 with lower
sign.

Let us show that solution u8 is particular case of (15). Denoting C3 =
a0 + k p, C2 = iπ + φ′, φ′ = − 2√

p2−4 q r
φ, φ = arccoshp2−4 q r

−4 q r from (15) we
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obtain

U(ξ) = a0 + k p + k
√

p2 − 4 q r coth

{√
p2 − 4 q r

2
ξ − φ

}
= a0+

+k

√
p2 − 4 q r cosh

{√
p2−4 q r

2 ξ − φ

}
+ p sinh

{√
p2−4 q r

2 ξ − φ

}

sinh
{√

p2−4 q r

2 ξ − φ

} =

= a0 + k

√−4qr

(
cosh

{√
p2−4 q r

2 ξ − φ

}
coshφ + sinh

{√
p2−4 q r

2 ξ − φ

}
sinhφ

)

sinh
{√

p2−4 q r

2 ξ − φ

} =

= a0 + k

√−4qr cosh
{√

p2−4 q r

2 ξ

}

sinh
{√

p2−4 q r

2 ξ − φ

} = a0−

−
4kqr cosh

{√
p2−4 q r

2 ξ

}

√
p2 − 4 q r sinh

{√
p2−4 q r

2 ξ

}
− p cosh

{√
p2−4 q r

2 ξ

}

(20)
In the same way one can show that u9 is equal to (15). Using the same the

double angle formulas for the hyperbolic functions we can see that u12 is equal
to u9 and consequently to Eq. (15).

By means of formulae

tanh
ξ

2
+ coth

ξ

2
= 2 tanh(ξ − iπ

2
) (21)

and in the case of C3 = a0 + k p, C2 = 0 from (15) we have solution u5 with
upper sign.

In the case of C3 = a0 + k p, C2 = −i π from (13) we obtain solution u13

from [1].
Denoting C3 = a0 + k p, C2 = π in (13) we have solution u14 from [1].
Using formula

tan ξ ± sec ξ = tan(
ξ

2
± π

4
) (22)

we obtain that u15 is equal to (13) at C3 = a0 + k p, C2 = ±π
2 .

Let us show that solution u20 is particular case of Eq. (13). Denoting

C3 = a0+k p, C2 = π +φ′, φ′ = 2√
4 q r−p2

φ, φ = arccos
√

4qr−p2

4qr from Eq. (13)
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we obtain

U(ξ) = a0 + k p + k
√

4 q r − p2 cot

{√
4 q r − p2

2
ξ + φ

}
= a0+

+k

√
4 q r − p2 cos

{√
4 q r−p2

2 ξ + φ

}
+ p sin

{√
4 q r−p2

2 ξ + φ

}

sin
{√

4 q r−p2

2 ξ + φ

} =

= a0 + k

√
4qr

(
cos

{√
4 q r−p2

2 ξ + φ

}
cos φ + sin

{√
4 q r−p2

2 ξ + φ

}
sin φ

)

sin
{√

4 q r−p2

2 ξ + φ

} =

= a0 + k

√
4qr cos

{√
4 q r−p2

2 ξ

}

sin
{√

4 q r−p2

2 ξ + φ

} = a0+

+
4kqr cos

{√
4 q r−p2

2 ξ

}

√
4 q r − p2 sin

{√
4 q r−p2

2 ξ

}
+ p cos

{√
4 q r−p2

2 ξ

}

(23)
In the same way one can obtain that solution u21 is particular case of Eq.

(13).
Using the double angle formulas for trigonometric functions one can see that

u24 is equal to u21 and consequently to Eq. (15).
By means of following identities

u25 = a0 +
2 k p d

d + cosh(p ξ)− sinh(p ξ)
= a0 + k p

2d

d + 2 e−p ξ
=

= a0 + k p

(
1− e−p ξ+φ

1 + e−p ξ+φ
+ 1

)
= a0 + k p + k p tanh

{
p ξ − φ

2

}

φ = ln
2
d

(24)

we have that u25 is equal to Eq. (15) at r = 0, C3 = a0 + k p, C2 = −φ.
Using identity

2(cosh p ξ + sinh p ξ)
d + cosh p ξ + sinh p ξ

= tanh
(

p ξ + φ

2

)
+ 1, φ = ln

1
d

(25)

we obtain that u26 is equal to Eq. (15) at r = 0, C3 = a0 + k p, C2 = φ.
One can see that u27 coincide with Eq. (10) if we take C3 = a0 and C2 = c1

q .
So Li and Dai [1] found twenty seven solutions of Eq. (2). However as we

have seen above there is the general solution of Eq. (2). We can also see that Li
and Dai in paper [1] made the second common error from the list of errors given
by Kudryashov in [9]: ”Some authors do not use the known general solutions of
ordinary differential equations”.
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