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Abstract

Some methods to look for exact solutions of nonlinear differen-
tial equations are discussed. It is shown that many popular methods
are equivalent to each other. Several recent publications with ”new”
solitary wave solutions for the Kuramoto—Sivashinsky equation are
analyzed. We demonstrate that all these solutions coincide with the
known ones.

1 Introduction

Nonlinear differential equations and their solutions play an important role in
modern science and we can see constantly increasing number of publications
in this area in the last years.

There are a lot of methods for finding exact solutions for nonlinear equa-
tions. For example, the inverse scattering transform [1], dressing method
[2, 3], Hirota method [4], group methods [5] and some others demonstrate a
lot of advantages in the case of exactly solvable nonlinear differential equa-
tions.

However most of these methods do not give any new results for the non-
linear nonintegrable equations. In such a case researchers often use ansatz
methods. During last decades we observe almost explosion in the number
of scientific papers using these methods. Modern computer algebra systems
Mathematica and Maple play the main role in this explosion. Using these
powerful programs the researcher can make a lot of cumbersome analytical
calculations in a short space of time.

It is well known that any expression containing exponents, trigonometric
or hyperbolic functions can be rewritten in different forms. In the case of
large expressions the equivalence of these forms is not obvious. Therefore it
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is very easy to think that different forms of one expression are the different
solutions. Using the computer algebra programs many researchers find exact
solutions of nonlinear differential equations and do not analyze the results
obtained. They often believe that a new ansatz can give new solutions, but
they often are wrong. In most cases new ansatz gives a new form of solution
but not new solution. Moreover, we observe that a lot of ”new” solutions can
be found from the known solutions with some choice of arbitrary constants
and parameters. A lot of such examples and the list of common errors is
given in the work [6].

The aim of this paper is to show that different ansatz methods often lead
to the same results. We also show that the large amount of ”new solutions”
of the Kuramoto—Sivashinsky equation presented in three recent papers can
be reduced by the algebraic transformations to two known solutions of this
equation.

In this paper we consider the solitary wave solutions of the Kuramoto—
Sivashinsky equation. This equation takes the form

ut + auux + buxx + kuxxxx = 0. (1)

Nonlinear evolution equation (1) has been studied by a number of au-
thors from various viewpoints. This equation has drown much attention not
only because it is interesting as a simple one-dimensional nonlinear evolu-
tion equation including effects of instability and dissipation but also it is
important for description of engineering and scientific problems. Equation
(1) was used in work [7] for explanation of the origin of persistent wave prop-
agation through medium of reaction-diffusion type. In paper [8] equation
(1) was derived for description of the nonlinear evolution of the disturbed
flame front. We can meet the application of equation (1) for studying of mo-
tion of a viscous incompressible fluid flowing down an inclined plane [9–11].
Mathematical modeling of dissipative waves in plasma physics by means of
equation (1) was presented in [12]. Elementary particles as the solutions
of the Kuramoto—Sivashinsky equation were studied in [13]. Equation (1)
also can be used for description of nonlinear long waves in viscous-elastic
tube [14].

The exact solutions of the Kuramoto—Sivashinsky equation are well known.
The solutions of Eq. (1) were first found by Kuramoto [7]. Later Eq. (1)
and its generalizations were considered many times. For example, the exact
solutions of these equations were obtained and re-discovered in works [15–30].

We do not have any possibility to give the analysis of all works with
solutions of the Kuramoto—Sivashinsky equation in this paper so we consider
only three recent publications [31–33] with ”new” solitary wave solutions of
the Kuramoto—Sivashinsky equation.
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Let us present well-known solutions of equation (1). Using the traveling
wave reduction ξ = µ(x − c t) we can write the Kuramoto—Sivashinsky
equation in the form of nonlinear ordinary differential equation

kµ3u′′′ + b µ u′ +
a

2
u2 − c u + A = 0, (2)

where A is an arbitrary constant of integration. Equation (2) is autonomous
(not explicitly depends on ξ) so its solution also depends on ξ− ξ0, where ξ0

is an arbitrary constant.
Solutions of Eq. (2) can be written in the form

u(ξ) =
c

a
+

60µ(b− 38kµ2)

19a
tanh(ξ − ξ0) +

120kµ3

a
tanh3(ξ − ξ0), (3)

with

µ2 = − b

76k
or µ2 =

11b

76k
. (4)

Here c is an arbitrary constant. In fact it depends on arbitrary constant A,
so we take c arbitrary to avoid using of A in (3).

In this paper we use the following notation:

µ1 =
1

2

√
−b

19k
, µ2 =

1

2

√
11b

19k
, c1 =

30b

19

√
−b

19k
, c2 =

30b

19

√
11b

19k
. (5)

Taking these notations into account, two known solutions of the Kuramoto—
Sivashinsky equation can be written as

u(1) =
c

a
+

3c1

2a
tanh (µ1(x− ct)− ξ0)− c1

2a
tanh3 (µ1(x− ct)− ξ0) , (6)

if we take µ = µ1 in (3) and

u(2) =
c

a
− 9c2

2a
tanh (µ2(x− ct)− ξ0) +

11c2

2a
tanh3 (µ2(x− ct)− ξ0) , (7)

if we take µ = µ2 in (3). Note that c and ξ0 are arbitrary constants in these
expressions.

The outline of this paper is as follows. In section 2 we obtain known solu-
tions (3) of the Kuramoto—Sivashinsky equation by the truncated expansion
method. Then we show the equivalence of truncated expansion method and
some ansatz methods using these solutions. In section 3 we give the analysis
of six ”new” solitary wave solutions of the Kuramoto—Sivashinsky equation
by Wazwaz [31] and prove that all his solutions are not new. In section 4 we
consider eight ”new” exact solutions of the Kuramoto—Sivashinsky equation
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by Chen and Zhang [32] and demonstrate that their exact solutions are not
new as well. Section 5 contains the analysis and discussion of sixteen solitary
wave solutions of the Kuramoto—Sivashinsky equation by Wazzan [33]. In
this section we show that all solutions by Wazzan can be reduced to two
known solutions (6) and (7).

2 Equivalence of different ansatz methods in

finding solitary waves of the Kuramoto—

Sivashinsky equation

Let us obtain solution of the Kuramoto—Sivashinsky equation by means of
the truncated expansion method [34]. We look for solution in the form of the
infinite series

u(x, t) =
u0

ϕp
+

u1

ϕp−1
+ . . . + up + . . . . (8)

In the case p = const > 0 we have that the coefficients ui(x, t), i = 0, 1, . . .
do not contain any singularities and equation ϕ(x, t) = 0 gives the position
of movable pole, ϕx and ϕt are not equals to zero. Substituting (8) into
equation (1) we get that p = 3 and u0 = 120kϕ3

x/a. This means that we
have the only movable singularity in solution of the Kuramoto—Sivashinsky
equation, that is the third order movable pole.

One can calculate other coefficients ui(x, t) step by step, but this process
is infinite and sum of this series is not known nowadays, so the solution in
closed form cannot be obtained by this approach in the general case.

The main idea of the truncated expansion method [34] is to cut this series
off to nonpositive powers of ϕ(x, t). This truncated expansion is taken

u(x, t) =
u0

ϕ3
+

u1

ϕ2
+

u2

ϕ
+ u3 (9)

for the third order pole in solution of the Kuramoto—Sivashinsky equation.
Substituting this finite sum into the the Kuramoto—Sivashinsky equation
we obtain a finite number of equations to calculate coefficients ui(x, t) and
the unknown function ϕ(x, t).

Calculating u0(x, t) u1(x, t) u2(x, t), we have

u(x, t) = 60
k

a

∂3 log ϕ

∂x3
+

60b

19a

∂ log ϕ

∂x
+ u3(x, t) (10)

with nonsingular part u3(x, t). The other result of these calculations is four
differential equations with respect to ϕ(x, t) and u3(x, t). General solution of
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these four differential equations is not known, but one can find the particular
solutions.

This particular solution takes the form [15]

ϕ(x, t) = 1 + βeγ(x−ct) (11)

where β and c are arbitrary constants. The value of constant γ is determined
from biquadratic equation and gives

γ2 = − b

19k
or γ2 =

11b

19k
. (12)

Comparing (4) with (12) we can note that γ = 2µ and use the same notation
as in the previous section, i.e. ξ = µ(x − ct) and ϕ(x, t) = ϕ(ξ) = 1 + βe2ξ.
So the solitary wave solutions are

u(ξ) = 60
kµ3

a

d3

dξ3
log

(
1 + βe2ξ

)
+

60bµ

19a

d

dξ
log

(
1 + βe2ξ

)
+

c

a
− 60bµ

19a
(13)

with µ given by (4). We can see that the only known solutions are traveling
waves, so the one can look for solutions of equation (2) instead of (1) and
get the same results.

This situation is common in the case of nonlinear nonintegrable equations
because it is difficult to find nontraveling wave solutions for them. That
is why the most researchers start using the traveling wave of the partial
differential equation. Thus they deal with the nonlinear ordinary differential
equation, in our case — with equation (2). Note that the value of constant
A in this ODE is crucial for the number of arbitrary constants in solution.
Taking A = 0 it is impossible to obtain two arbitrary constants.

Some generalization of equation (2) was studied recently by Eremenko
[35]. He proved that there are no other meromorphic solutions besides those
found by Kuramoto [7] and Kudryashov [15, 17]. In the case of equation
(2) it means that any solution containing only poles (with no more compli-
cated singularities like essential singularities, branching points, etc.) must
be represented by formula (3).

Let us discuss three popular approaches in finding exact solutions of non-
linear differential equations: the (G′/G)-expansion method, the exp-function
method and the tanh-method.

The (G′/G)-expansion method was introduced in [36] (here G′ stands for
dG(ξ)/dξ).

First of all let us note that taking into account expressions

d log ϕ

dξ
=

ϕξ

ϕ
,

d3 log ϕ

dξ3
= 2

ϕ3
ξ

ϕ3
− 6

ϕ2
ξ

ϕ2
+ 4

ϕξ

ϕ
. (14)
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we can write the expression (13) in the form

u(ξ) = 120
kµ3

a

(
ϕξ

ϕ

)3

−360
kµ3

a

(
ϕξ

ϕ

)2

+
60µ

a

(
b

19
+ 4kµ2

)
ϕξ

ϕ
+

c

a
− 60bµ

19a
.

(15)
The solution of ODE under study (eq. (2) in our case) by the (G′/G)-

expansion method is looked for in the form

u(ξ) =
m∑

j=0

αj

(
G′

G

)j

. (16)

Here G(ξ) is the solution of linear second order differential equation with
unknown constant coefficients G′′ + a1G

′ + a2G = 0.
We can see that known solution (15) have the same form as if it have

been obtained by the (G′/G)-expansion method. Is there any other solution
of this form?

It is well known that any solution of linear second order homogeneous
differential equation with constant coefficients does not have any singulari-
ties. So the fraction (G′/G) has only first order poles in the positions where
function G(ξ) has zeroes.

The degree m of polynomial (16) ”can be determined by considering the
homogeneous balance between the highest order derivatives and nonlinear
terms appearing in ODE” [36]. The highest order derivative in equation
(2) is u′′′, the highest order nonlinear term is u2, so we get m = 3 and
consequently

u(ξ) = α3

(
G′

G

)3

+ α2

(
G′

G

)2

+ α1
G′

G
+ α0. (17)

Hence the solution has triple pole and no other singularities. So due to the
Eremenko theorem [35] expression (17) cannot give new solution.

The next attempt to obtain new solutions can be done by the exp-function
method first appeared in [37]. Performing all differentiation and reducing all
fractions to the same denomination in expression (13) we have

u(ξ) =
f(ξ)

g(ξ)
, g(ξ) = 19a

(
1 + βe2ξ

)3
,

f(ξ) = (19c− 60bµ) + 3β(19c− 20bµ + 3040kµ3)e2ξ +

+ 3β2(19c + 20bµ− 3040kµ3)e4ξ + β3(19c + 60bµ)e6ξ.

(18)

The similar form of solution is used in the exp-function method. Namely,
solutions are looked for in the form

u(ξ) =

∑d
n=−h an exp(nξ)∑q

m=−p bm exp(mξ)
, (19)
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where h, d, p and q are unknown positive integers, an and bm are unknown
constants.

The relations between constants h, d, p and q can be found by the same
balancing procedure as in the case of (G′/G)-expansion method. The result
of this calculation is h = p and d = q. Any other choice of these constants
cannot lead to balance of linear (highest order derivative) and nonlinear term,
but this curious calculation takes place in many papers (we saw in all papers)
dealing with the exp-function method.

Canceling common factor exp(−pξ) we can rewrite (19) in the form

u(ξ) =
a−p + . . . + aq exp((p + q)ξ)

b−p + . . . + bq exp((p + q)ξ)
. (20)

The researchers using this method cannot say anything about values of p
and q. Therefore they try to substitute different values expecting to obtain
different solutions. So the question is: can the ansatz (20) give any solution
different from (18)?

To give the answer we note that exp(ξ) has no singularities in the complex
plane. So the only singularities of fraction (20) are poles at positions where
denominator has zeroes. The other possible case takes place when numerator
and denominator have zeroes at the same positions. But in this case the frac-
tion (20) is a constant. Hence the nonconstant solution is meromorphic and
Eremenko theorem [35] holds. The result is that no new solutions different
from (18) can be found by the exp-function method.

Note that in the case of the exp-function method the amount of unknown
parameters is greater then in most other ansatz methods, so the difficulty
of calculations increases. That is why the popularity of this ansatz method
seems mysterious. Due to the cumbersome calculations the authors often
obtain incorrect results with the exp-function method, some references may
be found in recent reviews of Kudryashov [6, 38].

Now let us consider the tanh-method [39]. First of all let us rewrite the
fraction ϕξ/ϕ as follows

ϕξ

ϕ
=

2βe2ξ

1 + βe2ξ
=

2eξ+(log β)/2

eξ+(log β)/2 + e−ξ−(log β)/2
=

= 1 + tanh

(
ξ +

log β

2

)
= 1 + tanh(ξ − ξ0),

(21)

where (log β)/2 = −ξ0. Substituting this result into (15) we obtain solution
of the Kuramoto—Sivashinsky equation in the form (3).

The tanh-method (the solution is looked for as polynomial in tanh ξ) is
used quite often due to its simplicity. Function tanh ξ has simple poles (and
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no other singularities), so the Eremenko results [35] can be applied. Therefore
the tanh-method cannot give solutions other than already known ones (3).

The one should bear in mind that we are writing tanh ξ (i.e. omitting the
constant phase ξ0) only for simplicity. Sometimes the researchers actually
forget this arbitrary constant. The result is a large amount of particular so-
lutions instead of several more general ones. Some examples of this situation
will be presented in the following sections.

3 ”New solutions” of the Kuramoto—Sivashinsky

equation by Wazwaz

Wazwaz [31] used ”the tanh method and the extended tanh method for an-
alytic treatment for two equations”: the Kuramoto—Sivashinsky equation
and the Kawahara equation. By means of these methods, ”new solitary
wave solutions for each equation” were found by him.

In previous section we have already seen that the tanh-method cannot
give new solutions of the Kuramoto—Sivashinsky equation. In the framework
of extended tanh-method solutions are represented as polynomials in tanh ξ
and coth ξ. Function coth ξ has simple poles in the complex plain, so the
polynomial in tanh ξ and coth ξ is meromorphic. Therefore this new ansatz
cannot lead to new solutions.

Let us show that all ”new” solutions obtained by Wazwaz are the special
cases of the known solutions (6) and (7) (u(1) and u(2) correspondingly) of
the Kuramoto—Sivashinsky equation.

Wazwaz has given the following six solutions of Eq. (1)

u1 =
c1

2a

(
2 + 3 tanh ζ1 − tanh3 ζ1

)
, (22)

u2 =
c1

2a

(
2 + 3 coth ζ1 − coth3 ζ1

)
, (23)

u3 =
c2

2a

(
2− 9 tanh ζ2 + 11 tanh3 ζ2

)
, (24)

u4 =
c2

2a

(
2− 9 coth ζ2 + 11 coth3 ζ2

)
, (25)

u5 =
c1

16a

(
16 + 9 tanh

ζ1

2
− tanh3 ζ1

2
+ 9 coth

ζ1

2
− coth3 ζ1

2

)
, (26)

u6 =
c2

16a

(
16− 3 tanh

ζ2

2
+ 11 tanh3 ζ2

2
− 3 coth

ζ2

2
+ 11 coth3 ζ2

2

)
, (27)
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where ζ1 = µ1(x − c1t), ζ2 = µ2(x − c2t). Solutions (22), (23), (24), (25),
(26) and (27) correspond to formulae (16), (17), (19), (20), (25) and (26) in
paper [31].

Analyzing expressions (22) and (24) one can see that they coincide with
solutions u(1) with c = c1 and u(2) with c = c2 at ξ0 = 0.

Taking into account the identity

coth ζk = tanh (ζk − iπ/2) , k = 1, 2. (28)

we can see that expression (23) is transformed to u(1) with ξ0 = iπ/2 and
c = c1. In the same way expression (25) is transformed to u(2) with ξ0 = iπ/2
and c = c2.

Formulae (26) and (27) can be reduced to u(1) with c = c1 and u(2) with
c = c2 at ξ0 = iπ/2 by means of formulae

tanh
ζk

2
+ coth

ζk

2
= 2 tanh (ζk − iπ/2) , k = 1, 2, (29)

tanh3 ζk

2
+ coth3 ζk

2
= 8 tanh3 (ζk − iπ/2)− 6 tanh (ζk − iπ/2) , k = 1, 2.

(30)
Indeed, for solution (26) we have

u5 =
c1

16a

(
16 + 9 tanh

ζ1

2
+ 9 coth

ζ1

2
− tanh3 ζ1

2
− coth3 ζ1

2

)
=

=
c1

16a

(
16 + 18 tanh (ζ1 − iπ/2)− (

8 tanh3 (ζ1 − iπ/2)− 6 tanh (ζ1 − iπ/2)
))

=

=
c1

2a

(
2 + 3 tanh (ζ1 − iπ/2)− tanh3 (ζ1 − iπ/2)

)
.

(31)
We also obtain the following set of equalities for solution (27)

u6 =
c2

16a

(
16− 3 tanh

ζ2

2
− 3 coth

ζ2

2
+ 11 tanh3 ζ2

2
+ 11 coth3 ζ2

2

)
=

=
c2

16a

(
16− 6 tanh (ζ2 − iπ/2) + 11

(
8 tanh3 (ζ2 − iπ/2)− 6 tanh (ζ2 − iπ/2)

))
=

=
c2

2a

(
2− 9 tanh (ζ2 − iπ/2) + 11 tanh3 (ζ2 − iπ/2)

)
.

(32)
So all solutions by Wazwaz are transformed to solutions (6) and (7). The

statement by Wazwaz that he has found new solutions of the Kuramoto—
Sivashinsky is not correct.

Note that Wazwaz obtained six expressions instead of two solutions u(1)

and u(2) because he forgot the arbitrary constant ξ0. The wave velocities
in (22)–(27) are not arbitrary as in u(1) and u(2) because Wazwaz has taken
A = 0 in eq. (2).
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4 ”New” solutions of the Kuramoto—Sivashinsky

equation by Chen and Zhang

Chen and Zhang [32] applied a generalized tanh-function method to find
”new multiple soliton solutions” of the general Burgers—Fisher and the
Kuramoto—Sivashinsky equations. The main idea of generalized tanh method
is to represent solution as polynomial in function F (ξ). Here F (ξ) stands for
special solution of the Riccati equation F ′ = A + BF + CF 2 with constant
coefficients A, B, C. Chen and Zhang believed that taking different special
solutions like coth ξ ± csch ξ, sec ξ ± tan ξ, tanh ξ, etc., they can obtain new
solutions of the Kuramoto—Sivashinsky equation.

It is well known that general solution of the Riccati equation with constant
coefficients has simple poles and no other singularities. So the solutions are
meromorphic and Eremenko theorem holds. Therefore this new ansatz does
not give any new solution of the Kuramoto—Sivashinsky equation. In this
section we will show that all solutions in [32] are the special cases of (3).

Note that Chen and Zhang used the special solutions of Riccati equation
with omitted arbitrary constant ξ0. Therefore they obtain large number of
solutions of the Kuramoto—Sivashinsky equation instead expression (3).

Chen and Zhang take the Kuramoto—Sivashinsky equation in the form

ut + uux + puxx − quxxxx = 0 (33)

and use the traveling wave variable ξ = k(x − ωt). One can see that this
equation coincides with (1) if we take a = 1 in eq. (1). Then they obtain
eight solutions (or twelve if we will take into account upper and lower signs
in their expressions).

To avoid intersection with notation introduced in first section we have
changed their notation as follows. We have changed (p, q, ω) in all solutions
given by authors [32] into (b,−k, c) in formulae below. Also we have changed
k to 2µ in u1, u2, u7, u8 and k to µ in u3, u4, u5, u6. Therefore these solutions
can be written as

u1 = c +
60

19
µ

(
b− 38kµ2

)
(tanh 2ξ ± i sech 2ξ)+

+120kµ3(tanh 2ξ ± i sech 2ξ)3,
(34)

u2 = c +
60

19
µ

(
b− 38kµ2

)
(coth 2ξ ± csch 2ξ)+

+120kµ3(coth 2ξ ± csch 2ξ)3,
(35)

u3 = c +
60

19
µ

(
b− 38kµ2

)
tanh ξ + 120kµ3 tanh3 ξ, (36)
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u4 = c +
60

19
µ

(
b− 38kµ2

)
coth ξ + 120kµ3 coth3 ξ, (37)

u5 = c− 60

19
µ

(
b + 38kµ2

)
tan ξ − 120kµ3 tan3 ξ, (38)

u6 = c− 60

19
µ

(
b + 38kµ2

)
cot ξ − 120kµ3 cot3 ξ, (39)

u7 = c− 60

19
µ

(
b + 38kµ2

)
(tan 2ξ ± sec 2ξ)−

−120kµ3(tan 2ξ ± sec 2ξ)3,
(40)

u8 = c +
60

19
µ

(
b + 38kµ2

)
(cot 2ξ ± csc 2ξ)+

+120kµ3(cot 2ξ ± csc 2ξ)3.
(41)

Here ξ = µ(x− ct) in all expressions where c is an arbitrary constant. Note
that wave vector µ in formulae (34)–(41) can have two values: µ = µ1 or
µ = µ2 in solutions u1, u2, u3, u4, and µ = iµ1 or µ = iµ2 in solutions u5, u6,
u7, u8.

The paper [32] contains some misprints: the meanings of wave vectors
in solutions u1, u2, u7, u8 are wrong and solutions u7 and u8 contain wrong
signs of coefficients. We corrected these misprints in expressions (34)–(41).

Taking into account formulae

tanh iα = i tan α, sech iα = sec α,

coth iα = −i cot α, csch iα = −i csc α
(42)

we can note that solutions u5, u6, u7 and u8 are the copies of solutions u3,
u4, u1 and u2. We can see this fact if we will choose µ = µ1 (or µ = µ2) in
u1, u2, u3, u4 and µ = iµ1 (or µ = iµ2) in u5, u6, u7, u8. So we have u3 = u5,
u4 = u6 u1 = u7 and u2 = u8. That is why we consider expressions (34)–(37)
further (i.e. solutions u1, u2, u3 and u4 only).

Comparing u3 with solution (3) we can see that they are the same if we
take ξ0 = 0 in (3).

Taking into account the identity

tanh(ξ + iπ/2) = coth ξ (43)

one can see that u4 coincides with (3) if ξ0 = −iπ/2.
Using the formula

tanh 2ξ ± i sech 2ξ = tanh(ξ ± iπ/4) (44)

we obtain that u1 with upper sign is equal to (3) if ξ0 = −iπ/4. In the same
way u1 with lower sign is equal to (3) if ξ0 = iπ/4.
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With the aid of the identity

coth 2ξ + csch 2ξ = tanh(ξ + iπ/2) (45)

we have that u2 with upper sign is equal to (3) if ξ0 = −iπ/2.
Taking into account the formula

coth 2ξ − csch 2ξ = tanh ξ (46)

we get that u2 with lower sign is equal to (3) if ξ0 = 0.
Hence we obtain that all solutions by Chen and Zhang [32] are the spe-

cial cases of the known solution (3) of the Kuramoto—Sivashinsky equa-
tion. Chen and Zhang did not present any new solutions of the Kuramoto—
Sivashinsky equation.

5 ”New” solutions of the Kuramoto—Sivashinsky

equation by Wazzan

Wazzan [33] used ”a modified tanh-coth method to solve the general Burgers—
Fisher and the Kuramoto—Sivashinsky equations”. He believed that ”new
multiple travelling wave solutions were obtained for the general Burgers—
Fisher and the Kuramoto—Sivashinsky equations”.

The idea of modified tanh-coth method is very close to the generalized
tanh method discussed in previous section. The only difference is that the
solution is represented as polynomial in F (ξ) and 1/F (ξ) simultaneously.
Here F (ξ) is special solution of the Riccati equation F ′ = A + BF + CF 2

with constant coefficients. Therefore this ansatz adds the poles of 1/F (ξ)
(i.e. the zeroes of F (ξ)) to the poles of F (ξ). Singularities of other type
are absent because of the nature of F (ξ) so Eremenko results can be applied
again. Hence this new ansatz cannot give new solutions of the Kuramoto—
Sivashinsky equation.

Wazzan takes A = 0 in eq. (2) so the wave velocities in his solutions are
fixed contrary to known solutions (6) and (7). He also omit the arbitrary
constant ξ0 and this is the main reason that sixteen solutions (instead of two)
of eq. (1) are given in paper [33]. The Wazzan solutions are the following

u1 = ±2c1

a

3e∓2ζ3 − 1

(e∓2ζ3 − 1)3 , (47)

u2 = ±2c1

a

(
1− 3e±2ζ3 − 1

(e±2ζ3 − 1)3

)
, (48)
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u3 = ∓2c2

a

12e∓4ζ4 + 9e∓2ζ4 + 1

(e∓2ζ4 − 1)3 , (49)

u4 = ±2c2

a

e±2ζ4
(
e±4ζ4 + 9e±2ζ4 + 12

)

(e±2ζ4 − 1)3 , (50)

u5 =
c1

2a

(±2 + 3(tanh 2ζ3 − i sech 2ζ3)− (tanh 2ζ3 − i sech 2ζ3)
3
)
, (51)

u6 =
c1

2a

(±2− 3(csch 2ζ3 − coth 2ζ3) + (csch 2ζ3 − coth 2ζ3)
3
)
, (52)

u7 =
c2

2a

(±2− 9(tanh 2ζ4 − i sech 2ζ4) + 11(tanh 2ζ4 − i sech 2ζ4)
3
)
, (53)

u8 =
c2

2a

(±2 + 9(csch 2ζ4 − coth 2ζ4)− 11(csch 2ζ4 − coth 2ζ4)
3
)
, (54)

u9 =
c1

2a

(±2 + 3(tanh 2ζ3 − i sech 2ζ3)
−1 − (tanh 2ζ3 − i sech 2ζ3)

−3
)
, (55)

u10 =
c1

2a

(±2− 3(csch 2ζ3 − coth 2ζ3)
−1 + (csch 2ζ3 − coth 2ζ3)

−3
)
, (56)

u11 =
c2

2a

(±2− 9(tanh 2ζ4 − i sech 2ζ4)
−1 + 11(tanh 2ζ4 − i sech 2ζ4)

−3
)
,

(57)

u12 =
c2

2a

(±2 + 9(csch 2ζ4 − coth 2ζ4)
−1 − 11(csch 2ζ4 − coth 2ζ4)

−3
)
, (58)

u13 =
c1

16a

(±16 + 9(tanh ζ3 − i sech ζ3)− (tanh ζ3 − i sech ζ3)
3

+ 9(tanh ζ3 − i sech ζ3)
−1 − (tanh ζ3 − i sech ζ3)

−3
)
,

(59)

u14 =
c1

16a

(±16− 9(csch ζ3 − coth ζ3) + (csch ζ3 − coth ζ3)
3

− 9(csch ζ3 − coth ζ3)
−1 + (csch ζ3 − coth ζ3)

−3
)
,

(60)

u15 =
c2

16a

(±16− 3(tanh ζ4 − i sech ζ4) + 11(tanh ζ4 − i sech ζ4)
3

− 3(tanh ζ4 − i sech ζ4)
−1 + 11(tanh ζ4 − i sech ζ4)

−3
)
,

(61)

u16 =
c2

16a

(±16 + 3(csch ζ4 − coth ζ4)− 11(csch ζ4 − coth ζ4)
3

+ 3(csch ζ4 − coth ζ4)
−1 − 11(csch ζ4 − coth ζ4)

−3
)
.

(62)

Here we use
ζ3 = µ1(x∓ c1t), ζ4 = µ2(x∓ c2t). (63)

Note that the upper and the lower signs in ζ3 and ζ4 correspond to upper
and lower signs in expressions (51)–(62).

The paper by Wazzan [33] contains a number of misprints: µ
(
x− 30

19
bµt

)
instead of µ

(
x + 30

19
bµt

)
in arguments of u1 and u3, rearranged upper and

13



lower signs in arguments of u5–u16 and wrong signs in terms with negative
powers in expressions u8–u16. Only two Wazzan solutions of the Kuramoto—
Sivashinsky equation (u2 and u4) are absolutely correct. We have corrected
all misprints in the list of solutions (47)–(62).

Now let us show that all cited solutions are the special cases of u(1) (for-
mula (6)) and u(2) (formula (7)).

Consider solution (6) of the Kuramoto—Sivashinsky equation at c = ±c1,
ξ0 = iπ/2. Then taking into account formula

tanh(ζj − iπ/2) = ∓e∓2ζj + 1

e∓2ζj − 1
, j = 3, 4 (64)

solution u(1) can be written as

u(1) = ±c1

a
+

3c1

2a
tanh(ζ3 − iπ/2)− c1

2a
tanh3(ζ3 − iπ/2) =

= ±c1

a
∓ 3c1

2a

e∓2ζ3 + 1

e∓2ζ3 − 1
± c1

2a

(
e∓2ζ3 + 1

e∓2ζ3 − 1

)3

=

= ± c1

2a

2
(
e∓2ζ3 − 1

)3 − 3
(
e∓2ζ3 + 1

) (
e∓2ζ3 − 1

)2
+

(
e∓2ζ3 + 1

)3

(e∓2ζ3 − 1)3 =

= ±2c1

a

3e∓2ζ3 − 1

(e∓2ζ3 − 1)3 = u1.

(65)

Therefore solution of the Kuramoto—Sivashinsky equation by Wazzan (47)
coincides with known solution (6) at c = ±c1 and ξ0 = iπ/2.

Let us rewrite solution u2 by Wazzan as follows

u2 = ±2c1

a

(
1− 3e±2ζ3 − 1

(e±2ζ3 − 1)3

)
= ±2c1

a

(
e±2ζ3 − 1

)3 − 3e±2ζ3 + 1

e±6ζ3 (1− e∓2ζ3)3 =

= ±2c1

a

3e∓2ζ3 − 1

(e∓2ζ3 − 1)3 = u1.

(66)

Hence u1 = u2 and solution by Wazzan (48) coincides with the known solution
(6) at c = ±c1 and ξ0 = iπ/2.

Now let us consider solution (7) of the Kuramoto—Sivashinsky equation
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with c = ±c2, ξ0 = iπ/2. Taking into account formula (64) we have

u(2) = ±c2

a
− 9c2

2a
tanh(ζ4 − iπ/2) +

11c2

2a
tanh3(ζ4 − iπ/2) =

= ±c2

a
± 9c2

2a

e∓2ζ4 + 1

e∓2ζ4 − 1
∓ 11c2

2a

(
e∓2ζ4 + 1

e∓2ζ4 − 1

)3

=

= ± c2

2a

2
(
e∓2ζ4 − 1

)3
+ 9

(
e∓2ζ4 + 1

) (
e∓2ζ4 − 1

)2 − 11
(
e∓2ζ4 + 1

)3

(e∓2ζ4 − 1)3 =

= ∓2c2

a

12e∓4ζ4 + 9e∓2ζ4 + 1

(e∓2ζ4 − 1)3 = u3.

(67)
We obtain that solution u3 of the Kuramoto—Sivashinsky equation by Waz-
zan coincides with known solution (7) at c = ±c2 and ξ0 = iπ/2.

Solution u4 can be transformed using the set of equalities

u4 = ±2c2

a

e±2ζ4
(
e±4ζ4 + 9e±2ζ4 + 12

)

(e±2ζ4 − 1)3 =

= ±2c2

a

e±2ζ4
(
e±4ζ4 + 9e±2ζ4 + 12

)

e±6ζ4 (1− e∓2ζ4)3 = ∓2c2

a

12e∓4ζ4 + 9e∓2ζ4 + 1

(e∓2ζ4 − 1)3 = u3

(68)

We get that u3 = u4. So Wazzan solution (50) coincides with the known
solution u(2) at c = ±c2 and ξ0 = iπ/2.

Taking into account the identity

tanh 2ζj − i sech 2ζj = tanh(ζj − iπ/4), j = 3, 4 (69)

we obtain that solution u5 by Wazzan coincides with solution u(1) if we take
c = ±c1 and ξ0 = iπ/4.

Using the formula

csch 2ζj − coth 2ζj = − tanh ζj, j = 3, 4 (70)

we get that solution u6 by Wazzan coincides with solution u(1) at c = ±c1

and ξ0 = 0.
Taking the expression (69) into consideration we have that solution u7

by Wazzan coincides with solution u(2) if c = ±c2 and ξ0 = iπ/4. With the
aid of formula (70) we also obtain that solution u8 by Wazzan coincides with
solution u(2) at c = ±c2 and ξ0 = 0.

Using the identity

(tanh 2ζj − i sech 2ζj)
−1 = tanh(ζj + iπ/4), j = 3, 4 (71)
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we have that solution u9 by Wazzan coincides with solution u(1) if we take
c = ±c1 and ξ0 = −iπ/4.

By means of the formulae

(csch 2ζj − coth 2ζj) = − tanh(ζj − iπ/2), j = 3, 4 (72)

we obtain that solution u10 by Wazzan coincides with solution u(1) at c = ±c1

and ξ0 = iπ/2.
Taking expression (71) into account we get that solution u11 coincides

with solution u(2) if we take c = ±c2 and ξ0 = −iπ/4. Using the identity
(72) we obtain that solution u12 by Wazzan coincides with solution u(2) in
the case c = ±c2 and ξ0 = iπ/2.

Taking into account the identities

(tanh ζj − i sech ζj) + (tanh ζj − i sech ζj)
−1 = 2 tanh ζj, j = 3, 4, (73)

(tanh ζj − i sech ζj)
3 + (tanh ζj − i sech ζj)

−3 =

= 8 tanh3 ζj − 6 tanh ζj, j = 3, 4
(74)

we have that solution u13 by Wazzan coincides with u(1) if we take c = ±c1

and ξ0 = 0.
Taking into account the identities

(csch ζj − coth ζj) + (csch ζj − coth ζj)
−1 = −2 tanh(ζj + iπ/2), j = 3, 4,

(75)

(csch ζj − coth ζj)
3 + (csch ζj − coth ζj)

−3 =

= −8 tanh(ζj − iπ/2) + 6 tanh(ζj − iπ/2), j = 3, 4
(76)

we obtain that solution u14 coincides with u(1) at c = ±c1 and ξ0 = iπ/2.
Using the expressions (73)–(74) we find that solution u15 by Wazzan is

equal to solution u(2) if we take c = ±c2 and ξ0 = 0.
By means of formulae (75)–(76) we obtain that solution u16 by Wazzan

is equal to solution u(2) in the case c = ±c2 and ξ0 = iπ/2.
So we have proved that all Wazzan solutions are not new. All his solutions

are the special cases of the known solutions u(1) and u(2) with different values
of free parameters c and ξ0.

Note that some Wazzan solutions are equal to each other. From the above
mentioned formulae we can see that there are obvious equalities u1 = u2 =
u10 = u14, u3 = u4 = u12 = u16, u6 = u13, u8 = u15.

6 Conclusion

Let us shortly formulate the results of this paper. We can see that the ansatz
methods used by different authors [31–33] do not give any new solutions of
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the Kuramoto—Sivashinsky equation. The main reason is that all these
methods use the same meromorphic structure of solutions. Therefore due to
Eremenko theorem these methods cannot give new results.

The authors of papers discussed in our work were unable to reconstruct
known solutions with all necessary arbitrary constants. This leads to the
great number of special solutions either without arbitrary parameters. One
can construct infinitely many particular solutions in such a way. But this
”achievement” shows misunderstanding of fundamental properties of differ-
ential equations.

We shall also note that all discussed methods (may be except the trun-
cated expansion method) work well only in the case of ordinary differential
equations. Theory of ordinary differential equations has more then three
hundred years history. So the expectations of new results obtained by simple
algebraic substitutions in the case of well-known equations are at least naive.
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