Учебно-образовательная физико-математическая библиотека
Книга
Мак-Кракен Д., Дорн У. Численные методы и программирование на ФОРТРАНе. М.: Мир, 1969.
Скачать: djvu (6.31 M, 600dpi)
Автор(ы): | Мак-Кракен Д., Дорн У. | Название: | Численные методы и программирование на ФОРТРАНе | Издательство: | М.: Мир | Год: | 1969 | Аннотация: | Книга является руководством по структуре и
использованию алгоритмического языка ФОРТРАН при решении вычислительных задач на современных электронных цифровых машинах.
Специфика и простота трансляторов для ФОРТРАНа, эффективность оттранслированных программ и методика выявления и оценки ошибок выгодно отличают этот язык от других алгоритмических языков. Все это обусловило широкое внедрение ФОРТРАНа в технику программирования за рубежом.
Одновременно в книге подробно излагаются
тщательно отобранные численные методы, применение которых иллюстрируется на многочисленных практических примерах.
Объединение численных методов и основ
программирования на ФОРТРАНе делает эту книгу полезной для широкого круга читателей, как для студентов и аспирантов втузов, так и для инженеров и специалистов по теории | Оглавление: | Предисловие редактора перевода
Предисловие
Глава 1. Основы программирования на ФОРТРАНе
1.1. Применение цифровых вычислительных машин
1.2. Последовательные этапы в "решении задачи" помощью ЭЦВМ
1.3. Программа на ФОРТРАНе
1.4. Константы
1.5. Переменные и наименование переменных
1.6. Операции и выражения
1.7. Математические функции
1.8. Арифметические операторы
1.9. Ввод и вывод
1.10. Передача управления. Операторы GO ТО и IF
1.11. Операторы PAUSE, STOP и END
1.12. Написание программы, ее перфорация на перфокартах и постановка ее на ЭЦВМ
1.13. Практический пример 1: Площадь треугольника
1.14. Практический пример 2: Расчет цепи переменного тока
Глава 2. Ошибки
2.1. Введение
2.2. Относительные и абсолютные ошибки
2.3. Ошибки, содержащиеся в исходной информации
2.4. Ошибки ограничения
2.5. Ошибки округления
2.6. Распространение ошибок
2.7. Графы вычислительных процессов
2.8. Примеры
2.9. Памятка программисту
Глава 3. Практическое вычисление функций
3.1. Введение
3.2. Степенные ряды
3.3. Полиномы Чебышева
3.4. Экономизация степенных рядов
3.5. Вычисление ряда
3.6. Рациональные приближения и непрерывные дроби
3.7. Элементарные функции
3.8. Практический пример 3: Ошибки при прямом вычислении синуса по ряду Тейлора
Глава 4. Некоторые простые программы
4.1. Введение
4.2. Практический пример 4: Расчет колонны
4.3. Частотная характеристика сервомеханизма. Отладка программы
4.4. Практический пример 6: Интеграл вероятностей
Глава 5. Численное решение уравнений
5.1. Введение
5.2. Метод последовательных приближений
5.3. Усовершенствованный метод последовательных приближений
5.4. Метод Ньютона-Рафсона
5.5. Случай почти равных корней
5.6. Сравнение методов и их ошибок округления
6.7. Корни многочленов
5.8. Влияние неточности коэффициентов многочлена
5.9. Системы уравнений
5.10. Комплексные корни
5.11. Нахождение исходного приближения
5.12. Практический пример 7: Процесс роста монокристалла из пара
Глава 6. Численное интегрирование
6.1. Введение
6.2. Правило трапеций
6.3. Ошибка ограничения для метода трапеций
6.4. Ошибки округления при использовании метода трапеций
6.5. Экстраполяционный переход к пределу
6.6. Правило Симпсона
6.7. Метод Гаусса
6.8. Численные примеры и сравнение методов
6.9. Практический пример 8: Светимость электрической лампочки
Глава 7. Переменные с индексами и оператор DO
7.1. Определения
7.2. Примеры использования переменных с индексами
7.3. Для чего нужны переменные с индексами?
7.4. Оператор DIMENSION
7.5. Допустимые формы индексов
7.6. Оператор DO
7.7. Дальнейшие определения
7.8. Правила использования оператора
7.9. Дальнейшие примеры использования оператора DO
7.10. Практический пример 9: Линейная интерполяция
Глава 8. Системы линейных алгебраических уравнений
8.1. Введение
8.2. Метод исключения (метод Гаусса)
8.3. Ошибки округления
8.4. Уточнение решения
8.5. Влияние погрешностей коэффициентов. Достижимая точность решения
8.6. Итерационные методы решения систем линейных уравнений
8.7. Сравнение методов
8.8. Практический пример 10: Проведение кривой методом наименьших квадратов
Глава 9. Функции, подпрограммы и вспомогательные операторы
9.1. Введение
9.2. Функции, предусмотренные в программе-трансляторе
9.3. Арифметический оператор-функция
9.4. Подпрограммы FUNCTION и SUBROUTINE
8.5. Таблица основных характеристик функций и подпрограмм
9.6. Операторы EQUIVALENCE и COMMON
9.7. Практический пример 11: Решение квадратных уравнений с помощью подпрограмм
Глава 10. Обыкновенные дифференциальные уравнения
10.1. Введение
10.2. Решение с помощью рядов Тейлора
10.3. Методы Рунге-Кутта
10.4. Анализ ошибок, возникающих при использовании методов Рунге-Кутта
10.5. Методы прогноза и коррекции
10.6. Анализ ошибок при использовании методов прогноза и коррекции
10.7. Достижимая точность
10.8. Сравнение методов
10.9. Практический пример 12: Полет сверхзвукового самолета
Глава 11. Уравнения в частных производных
11.1. Введение и некоторые определения
11.2. Разностные уравнения
11.3. Эллиптические уравнения
11.4. Решение эллиптического разностного уравнения
11.5. Гиперболические уравнения
11.6. Решение гиперболического разностного уравнения
11.7. Параболические уравнения
11.8. Решение параболического разностного уравнения
11.9. Практический пример 13: Распределение температуры в трубе квадратного сечения
Приложение 1. Сводка методов ввода и вывода информации в ФОРТРАНе
П.1.1. Основные сведения
П.1.2. Список переменных в операторе ввода-вывода
П.1.3. Оператор FORMAT
П.1.4. Дополнительные приемы построения оператора FORMAT
П.1.5. Операции с магнитной лентой
Приложение 2. Некоторые употребительные математические формулы
Ответы к упражнениям
Дополнение. Сводка основных правил программирования на языке ФОРТРАН. Б. М. Наймарк
Д.1. Основные символы языка ФОРТРАН
Д.2. Числа
Д.З. Переменные без индексов
Д.4. Индексы
Д.5. Переменные с индексами
Д.6. Выражения
Д.7. Функции
Д.8. Операторы
Д.9. Описательные операторы
Д.10. Исполнимые операторы |
|