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Asymptotology I: Problems, Ideas and Results
I. V. Andrianov and L. I. Manevich

Abstract. A heuristic description of the development of asymptotelogy,
which is an old and useful branch of mathematical physics developing in
a new way, is presented. The central idea is to simplify the model for a
physical system by first studying‘ its asymptotic behaviour and then
modelling the actual behaviour by perturbing the asymptotic solution.

1. Introduction

Almost any physical theory formulated in mathematical terms in a general'way is extremely
complicated.  Therefore, both in creating a theory and in its further development, the simplest
limiting cases that admit analytical solutions are of paramount importance. It is quite common that
in the limiting case there are fewer equations or the (differential) equation has a lower order or

nonlinear equations are replaced by linear ones or the original system is subjected to a kind of

averaging and so on and se forth.

Behind the above-mentioned idealizations, however diverse they may seem, lies a high degree
of symmetry inherent in a mathematical model of the phenomenon at issue in its limiting situation.
An asymptotic approach to a complex and perhaps “insoluble” problem consists basically of treating
an original ~ insufficiently symmetric — system as ‘approximating to a given symmetric one. It is
basically important that the determination of corrections allows one to study deviations from the

limiting case in a way which is much simpler than a direct study of the original system.

At first sight, the potentialities of such an approach are limited by a narrow range of

variations in the parameters of the system.
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Experience gained in the study of various physical problems has shown, however, that in the

case of system parameters varying considerably and the system itself departing from one limiting

symmetric pattern, in general another limiting system, often with a less pronounced symmetry, exists
and a perturbed solution can now be formed for the latter one.

This enables the system’s behaviour to be defined over the entire range of the variations of the
parameters using a finite number of limiting cases. Such an approach makes the mo?t of one's
physical intuition and contributes to its further enrichment and also leads to the formatjxon of .new
physical concepts. Thus the boundary layer — an important concept in fluid mechanics — 1's of
pronounced asymptotic nature and is related to the localization at the boundaries of a streamlined
body in the zone where the viscosity of the fluid cannot be neglected.  In the mechanics of a

deformable rigid body and in the theory of electricity, similar phenomena are known as the edge effect
and the skin effect respectively.

That the asymptotic method assists in relating different physical theories with one another is
of little consequence. Albert Einstein would point out that “the happiest lot of a physical theory is to

serve as a basis for a more general theory while remaining a limiting case thereof”.

The above-mentioned problems will be clarified in this paper.

2. An illustrative example

As an illustration of the technical aspect of the method, consider a simpie algebraic example.

A biquadratic equation
A -2 - 8 =0 2.1

2. Then we have

is reduced to a quadratic one and readily solved by setting z

zr = %% =z = +2j; i = -1

Such a simplification is due to the symmetry of the equation: substituting (- z) for z
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does not change it. Let us assume that an original equation describes some given physical system with

its parameters undergoing small changes and as a consequence the equation takes the form
W o- e~ 2P - 8 = ¢ 2.2)

In this case the sysiem is said to have received a small perturbation, the expression (— ez® ')
is referred to as the “periurbation term™ and ¢ as the “small parameter”. The system becomes
asymmetric, and the solution of the new equation can no longer be written in simple form. The new
equations’s roots y; (i = 1,..,4), however, should not differ significantly from z; , hence set
% = = The error of such a substitution is determined by the value of the discarded term (— e®).

To make the solution more accurate, let us represent it as a series

=5+ o)+ AP L R (2.9)

Substituting this expression into the perturbation equation and equating the coefficients of the

same powers of ¢ we find
w o= 0258 /(F - 1); i = 1.4 (2.4)
Evaluation of corrections could be continued without any difficulty, but the deviation from the exact

solution will inevitably increase with the increase in the value of e.

Consider now the opposite case of big perturbations. Then the reciprocal ¢ ™! will be small.
Then, the roots of equation (2.2) can be divided into two groups. As €~ ! tends to zero, three roots
tend to zero and the fourth one increases indefinitely, the two groups lending themselves, as mentioned

above, to expansions in the small parameter ¢ 1,

B o= €+ . ; (2.5)
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There exists, however, a region where the asymptotic approximation produces unsatisfactory
results. ‘This is the region where “smali” ¢'s are already large and “large” ¢’s are still small. The
problem of forming a solution within such a region on the basis of available limiting values is one of
the most difficult ones when employing asymptotic methods as is the problem of deciding as to what is

to be considered “small” or “large”. This will be considered later.

Besides, it should be noted that perturbation solutions of a problem represented as expansions
in series in the powers of a small parameter of type (2.3) do not necessarily converge to the solution
which is being sought. The expansions are often asymptotic. A ratio of each term of the series to the
preceding one tends to zero when the expansion parameter approaches its limiting value, say, zero; and
the deviation of the sum of the first N terms of such a series from the function represented by the
complete series is of the (N + 1)th order. (In examining a series for convergence, the parameter is
regarded as fixed and the limit of the sum of N terms of the series is takes as N tends to infinity). In
particular cases a divergent asymptotic series (with infinite limit) is sometimes more useful than a

convergent one as only a few of the initial terms gives a fair approximation.

Let us consider some typical situations where the asymptotic approach is effective.

3. Reducing the di jonality of a system

A high degree of an algebraic or a differential equation or a large number of such equations are
all manifestations of one of the principal difficulties that arise in solving physical problems. = This
difficulty is sometimes called “the imprecation of dimensionality”. In order to get over it, two
antithetical approaches have been developed. The first one proves to be effective if individual
elements of a system under consideration differ markedly from each other in one or another
characteristic. Then by introducing characteristics of different elements — one is able to carry out
an asymptotic reduction of dimensionality, or in other words, a reduction in the degree of freedom and
then one can try to improve the solution obtained by using the asymptotic approximation. A typical
example of such a situation is a three-body problem in celestial mechanics. The masses of celestial
bodies (say, those of the Sun, the planet Jupiter and the Earth), as a rule, differ markedly, and a small
parameter ~ mass ratio — enables as asymptotic reduction of the dimensionality. Based on this are
the classical methods of celestial mechanics, a limiting (high symmetry) case being the exactly solvable

two-body problem. Celestial mechanics is the first branch of science where the asymptotic method
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(the perturbation theory) has played a dominant role, and moreover, this method was originally

developed in response to the pressing necessity of solving the problem in celestial mechanics.

It should be noted that asymptotic methods are often used without being specifically regarded
as such and even without being fully understood. Thus, one degree of freedom models are employed
extensively in engineering. Clearly, employing such models always involves an asymptotic reduction
in the dimensionality and the possibility, at any rate in principle, of finding the corresponding

corrections, but a clear indication that this is the case is rare.

Let us now consider a second way of getting out of the difficulty.
4. Continualization

If a system under consideration consists of a set of homogeneous elements, then the asymptotic
approach can be used not only for the reduction of dimensionality but also for increasing the

dimensionality. Thus, we approach a highly important class of physical models where discrete systems
are replaced by continuous ones.

As an example let us consider the longitudinal oscillations of an endless chain of the same
masses connected by springs of equal length I and rate b.  With the smooth oscillation form
characterized by the displacement uy, at each point kL (k = 0, £1, +2, .... ), the chain can be

replaced’ by a continuous rod, thus enabling us to change from the infinite system of ordinary

differential equations

MUpge = c(uk-l-l - fu, + “k~1)
to the single partial differential equation

— 2
muy, = cLiu,.

Degrees of freedom have now grown in number (the continuum replacing the countable set),
and a relative simplicity of this limiting case of long-wave oscillations is due to the symmetry of the

partial differential equation not varying under an arbitrary displacement along the rod.
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As the period of oscillations and their wavelengths will decrease, the error of the approximate
solution obtained in this way will increase.  Another limiting case for the same system is for the
minimum possible wavelength oscillations (Fig. 1).  Their form can be readily calculated and
employed as a first approximation in the study of the short-wave oscillations of the system. In this
case the desired solution should have the form of the product of the solutions of the limiting case which

is deduced from the partial differential equation.

The method of transition from the discrete models to the continuous ones has found extensive

applications in physics, and the entire mechanics of the continuum is based essentially on this method.

This is not always so, however, as the case under consideration. Fluids, say, do not lend
themselves in the purpose of defining a periodic equilibrium structure in reference to which oscillations
are executed. Nevertheless, at a macroscopic level we perceive fluid flow as continuum flow which can
be simulated by a continuous fluid model. It is true that the continuity is provided by the averaging
of small-scale (microscopic) movements. The consequences of such an averaging will be discussed
below. This will show how the transition to the differential equations of hydrodynamics becomes

possible.
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Fig.1
a- endless chain; b- long-wave oscillations; c-minimum possible wavelength oscillations;

d-short-wave oscillations
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In conclusion let us quote from Erwin Schridinger who figuratively explains the efficiency of
the method: “Let’s assume we would teéll an ancient Greek that the individual particle path in a fluid
could be traced. The ancient Greek would not believe that man’s limiting intellect could solve such
an intricate problem. The point is that we have learned to master the whole of the process using but

a single differential equation” [17].

5. Averaging

In many physical problems, some variables vary slowly, others fast. It is natural to bring out
a question whether it is appropriate to have first studied the global structure under consideration,
digressing from its local distinctive features, and then to investigate the system locally. It is the
averaging method that is aimed to the division of the fast and slow components of the solution.
Without going into the details of the method — the more because it has at present a lot of
modifications — it will be noted only that it involves the introduction of the “slow” (macroscopic) and
the “rapid” {microscopic) variables whose equations are separated and can be solved independently, or

sequentially.

This method was developed for and gained wide use in solving problems in celestial mechanics
and the nonlinear oscillation theory that are defined by the common differential equations. At
present, the method is used to great advantage for solving variable-coefficient partial differential
equations in such disciplines as the theory of composites, or the design of reinforced, corrugated,
perforated, etc., shells [16].  An original non-homogeneous mediom or structure is reduced to a
homogeneous one {generally speaking, to an isotropic one) with some effective characteristics. The
averaging method allows not only the obtaining of effective characteristics but also the investigation
of non-homogeneous distribution of mechanical stresses in different materials and structures which is of

great significance for evaluating their strength [18].

6. Renormalization

Regrettably the simple averaging of small-scale movements is not always applicable, either.

There occur such problems wherein several different-scale movements show up markedly even at the
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macroscopic level.  Among these is, for example, the study of what is known as critical phenomena

related to phase transitions, or the study of turbulence. In this case a number of successive averaging

procedures for all scales has to be carried out. This is the very essence of the renormalization
procedure which forms the renormalization group method. A rigorous realization of the procedure,
however, involves considerable technical difficuities. A practical solution of the problem is offered by

a quite unexpected asymptotic method.

The fact is that in a four-dimensional imaginary world these problems do not occur, and this
makes it possible to carry out an ordinary averaging. This case could be considered as a limiting one
il

and the quantity e = § — d (where d is the spatial dimensionality) - as a small parameter. In

the real three-dimensional world d = § and ¢ = 1, which is not small. Nevertheless, an
asymptotic expansion in the parameter proved to be quite effective in solving the most complicated

problems of the critical-phenomena physics [19].

7. Localization

Real system deviations from a limiting (i.e., ideal) one may be of a different nature.
Sometimes these deviations are small over the entire range of the system parameter variations: it is
not infrequent, however, that the deviations are high, although localized within a small region. This is
true for the above instance of a body streamlined by a fluid. Another example is the transition
(reducing??) from the three-dimensional model of an elastic body to the two-dimensional model (plates
shells), or to the one-dimensional model (rods, beams). In this case near the body boundaries exist ;
narrow boundary layer (of the order of the plate or the shell wall thickness; or of cross-sectional
characteristic size of the rod or the beam) wherein the three-dimensionality of the original problem
manifests itself. Upon reducing the three-dimensional problem to the two-dimensional one, it is still
possible to isolate the so-called end effects concentrated at shell boundaries or its structural
inhomogeneities.  the concept of the boundary layer is closely related to the so-called St. Venant
principle that says that in the analysis of a structure it is possible to digress from the detailed load
distribution pattern in fixing its elements. In actual fact, however, the distribution pattern is essential
but within narrow zones only of which the extension is defined by the element cross-sectiona;
characteristic sizes or by the load-variation period. Mathematically, defining a boundary layer is due

to the fact that a simplified differential equation is of a lesser order than an original one. The

asymptotic in this case is termed singular.
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8. Linearization

If the equations of a physical theory are nonlinear, then even a small number of degrees of
freedom or a localized solution do not assure the overcoming of mathematical difficulties. The

problem is solved by the linearization —an asymptotic method — that relies on the concept of low-

intensity processes.

A linear approach (to the problem) allows formulation of such fundamental concepts as the
pormal vibration, the eigenfunction and the specirum. For a linear system with the n degrees of
freedom with no dumping one can always choose such “normal” coordinates which describe the system
by n oscillation for pendulums not linked to one another. In other words, any motion of a linear
system is represented by a linear combination of normal oscillations (or waves), that is, by the so-called

expansion in a Fourier series.

It is of fundamental importance that the oscillations have been singled out not onmly
mathematically but also physically, Thus, it is precisely the normal oscillations that will resonate

under the influence of the periodic external force.

If we consider a linear system as a first approximation to a nonlinear one (that is the crux of
local linearization) then, when taking into account the nonlinear corrections in the equations of a
second and following approximations, there appear dummy external loads that bring about the normal

oscillation resonances. This can be avoided by “touching up* the parameters of the normal linear

oscillation.

However, the nonlinear systems, specially the high dimensional ones, quite often do not lend
themselves to correct description in approximation of the local linearization method.  Thus the
combination of a high dimensionality with a strong nonlinearity was until recently considered an
insurmountable difficulty in carrying out a structural study of a physical system. But a fairly
extensive class of multidimensional nonlinear systems that permit such a study has been recently
discovered.  These systems known as the “integrable systems” have particular solutions as stable
solitary waves — solitons — that are in a way analogues of normal oscillations defined in linear systems.
Thus a nonlinear generalization of the Fourier method —the method of the inverse scattering
problem — wherein solitons play a fundamental role taking the place of the usual Fourier components.
The method of the inverse problem of scattering can be treated as the nonlocal linearization of an
original nonlinear equation. In other words, the latent instability of a nonlinear system makes it

possible to find a transformation that reduces the construction of an extensive class of solutions to the
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analysis of linear equations.

The integrable systems can in their turn act as an approximation in the analysis of the systems

that approximate them, but are non-integrable within the framework of an asymptotic approach.

9. Pade approximation

So far we have assured ourselves that practically any physical problem, whose parameters
include the variable parameter €, can be approximately solved as ¢ approaches zero or infinity. How
this “limiting” information can be used in the study of a system at the intermittent values of ¢, say,
€ = 1?7 This problem is one of the most complicated in asymptotic analysis. As yet there is no
general answer to the tricky question of how far the parameter ¢ can be considered small (or large) in

the problem involved. Though, in many instances this problem is alleviated by the so-called two-
point Pade approximants.

The notion of two-point Pade-approximant is defined [20] as follows. Let

Fle}) = f a'-si when € — 0 (9.1)
i=0 .
Fle) = 'io ﬁ,-t‘_" when ¢ — o0 (9.2)

The two-point Pade-approximant is represented by the function

in which m + I coefficients of expansion in the Taylor series when ¢ — 0, and m coefficients in the

Lorentz series when € — oo coincide with the corresponding coefficients of the series (9-1) and (9.2).

The practice shows that the Pade approximants do indeed quite often allow the limiting

expansions to be “sewed together” after defining the regions of “small” and “large” values of ¢. ‘This

resembles a known interpolation procedure, that is, the reconstruction of the intermediate values of a
quantity by its two extreme values. ‘The role of such known values is played in this case by the

asymptotics as ¢ tends to zero and to infinity.
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For instance, for equation (2.2) the Pade approximant for the first root
v = (2 + 0.5% + 0.033)(1 + 0.1%2)7}

derived on the basis of the asymptotics of the form (2.5) as € tends to zero or or the form (2.6) as ¢

tends to infinity, defines satisfactorily the exact solution at any value of ¢ (Fig. 2).
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Fig.2

J-exact solution and two-point approximants

10. Modern computers and asymptotic methods

The reader must have repeatedly asked himself a question: are the asymptotic methods of any

practical use at all when there are computers?  Is it not simpler to write a programme for any

original problem to solve it numerically by using standard procedures?

The answer may be like this. First the asymptotic methods are very useful in the preliminary

Lo o . . s
stage of solving a problem even in cases where the principal aim is to obtain the numerical resuits
s makes it possible to choose the best numerical method and gain an
Secondly, the

The asymptotic analysi
understanding of a vast body of numerical material, though not properly arranged.

i i hine
asymptotic methods are specially effective in those regions of parameter values where mac

. . ih
computations are faced with serious difficulties. Laplace used to say not without reason that the

asymptotic methods are “more accurate, the more they are needed”. Moreover, the possibility exists
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of developing such algorithms wherein smooth portions of solutions are obtained numerically, and the
asymptotic approaches are applied to that parameter value regions where these solutions change
drastically, say, within boundary layers. Thirdly, the asymptotic methods develop our intuition in
every possible way and play, as noted above, an important role in shaping the mentality of, say, a
contemporary scientist or engineer.. Therefore, it would be more proper to consider the asymptotic

and numerical methods not as competing, but as mutually complementary ones.

Again computers further considerably the development of the asymptotic method. For
instance, defining higher approximations is a major difficulty in applying the asymptotic methods. In
solving complex problems by manual calculations one may succeed in defining two or three

approximations at the most. Now the burden of manual calculations can be shouldered by the

computer.

11.  Asymptotic methods and teaching physics

“Few of the equations of physics have exact solutions which are manageable, and one usually
has to have recourse either to approximate methods or to numerical solutions.  Numerical work
becomes cumbersome if the problem has a great number of variables, or if one is interested in a general
survey of possible solutions. In those cases the natural approach is by approximation. In teaching
physics we probably overemphasize the exceptional problems which have closed solutions in terms of
elementary functions, and do not give enough attention to the more common situation in which
approximations have to be used. Beginners are usually uncomfortable with approximations, and,
even if only an approximate answer is required, often prefer to find the exact answer, if this is possible,
and then to approximate. This is understandable because the art of choosing a suitable
approximation, of checking its consistency (e.g. ensuring there are no cancellations) and finding at least

intuitive reasons for expecting the approximation to be satisfactory, is much more solving an equation
exactly” [21].
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